已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程
(1) ;(2).
解析试题分析:(1)由题意知,P到F的距离等于P到的距离,所以P的轨迹C是以F为焦点,直线为准线的抛物线,故直接利用抛物线的标准方程写出曲线C的方程;(2)依题意,实质上是已知抛物线的弦AB中点为,求直线AB的方程,一般方法是设,代入抛物线方程得,,两式相减得,即,这就是直线AB的斜率.下面就可很方便求出直线AB的方程了.
试题解析:(1)由题意知,P到F的距离等于P到的距离,所以P的轨迹C是以F为焦点,直线为准线的抛物线,它的方程为 5分
(2)设
则 7分
由AB为圆M的直径知, 9分
故直线的斜率为 10分
直线AB的方程为
即 12分
考点:(1)抛物线的定义;(2)已知抛物线的弦中点问题.
科目:高中数学 来源: 题型:解答题
已知椭圆 的左、右焦点分别是、,是椭圆右准线上的一点,线段的垂直平分线过点.又直线:按向量平移后的直线是,直线:按向量平移后的直线是 (其中)。
(1) 求椭圆的离心率的取值范围。
(2)当离心率最小且时,求椭圆的方程。
(3)若直线与相交于(2)中所求得的椭圆内的一点,且与这个椭圆交于、两点,与这个椭圆交于、两点。求四边形ABCD面积的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,已知椭圆经过点,椭圆的离心率.
(1)求椭圆的方程;
(2)过点作两直线与椭圆分别交于相异两点、.若的平分线与轴平行, 试探究直线的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
矩形的中心在坐标原点,边与轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线与,与,与的交点依次为.
(1)以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段的(等分点从左向右依次为,线段的等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆直线与圆相切,且交椭圆于两点,是椭圆的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O为坐标原点,若求椭圆的方程;
(Ⅲ) 在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点,直线AS,BS与直线分别交于M,N两点,求线段MN的长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.
(Ⅰ).若,求抛物线的方程;
(Ⅱ).求△ABM面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com