精英家教网 > 高中数学 > 题目详情

已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程

(1) ;(2)

解析试题分析:(1)由题意知,P到F的距离等于P到的距离,所以P的轨迹C是以F为焦点,直线为准线的抛物线,故直接利用抛物线的标准方程写出曲线C的方程;(2)依题意,实质上是已知抛物线的弦AB中点为,求直线AB的方程,一般方法是设,代入抛物线方程得,两式相减得,即,这就是直线AB的斜率.下面就可很方便求出直线AB的方程了.
试题解析:(1)由题意知,P到F的距离等于P到的距离,所以P的轨迹C是以F为焦点,直线为准线的抛物线,它的方程为            5分
(2)设
                 7分
由AB为圆M的直径知,        9分
故直线的斜率为        10分
直线AB的方程为
                                 12分
考点:(1)抛物线的定义;(2)已知抛物线的弦中点问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆 的左、右焦点分别是,是椭圆右准线上的一点,线段的垂直平分线过点.又直线按向量平移后的直线是,直线按向量平移后的直线是 (其中)。
(1) 求椭圆的离心率的取值范围。
(2)当离心率最小且时,求椭圆的方程。
(3)若直线相交于(2)中所求得的椭圆内的一点,且与这个椭圆交于两点,与这个椭圆交于两点。求四边形ABCD面积的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为
(1)求椭圆方程;
(2)过点的直线与椭圆交于不同的两点,当面积最大时,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知椭圆经过点,椭圆的离心率.

(1)求椭圆的方程;
(2)过点作两直线与椭圆分别交于相异两点.若的平分线与轴平行, 试探究直线的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

矩形的中心在坐标原点,边轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线,,的交点依次为.

(1)以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段等分点从左向右依次为,线段等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆直线与圆相切,且交椭圆两点,是椭圆的半焦距,
(Ⅰ)求的值;
(Ⅱ)O为坐标原点,若求椭圆的方程;
(Ⅲ) 在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点,直线AS,BS与直线分别交于M,N两点,求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.

(Ⅰ).若,求抛物线的方程;
(Ⅱ).求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线焦点为,直线经过点且与抛物线相交于两点

(Ⅰ)若线段的中点在直线上,求直线的方程;
(Ⅱ)若线段,求直线的方程

查看答案和解析>>

同步练习册答案