设椭圆
的左焦点为
,离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为![]()
(1)求椭圆方程;
(2)过点
的直线
与椭圆交于不同的两点
,当
面积最大时,求![]()
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右两焦点分别为
,
是椭圆上一点,且在
轴上方,![]()
.![]()
(1)求椭圆的离心率
的取值范围;
(2)当
取最大值时,过
的圆
的截
轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线
上任一点
引圆
的两条切线,切点分别为
.试探究直线
是否过定点?若过定点,请求出该定点;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,
为坐标原点,如果一个椭圆经过点P(3,
),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,斜率为
的直线过抛物线
的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.![]()
(Ⅰ)若
,求抛物线的方程;
(Ⅱ)求△ABM面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点F(2,0)和定直线
,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
与双曲线
有公共焦点
,点
是曲线
在第一象限的交点,且
.
(1)求双曲线
的方程;
(2)以双曲线
的另一焦点
为圆心的圆
与直线
相切,圆
.过点
作互相垂直且分别与圆
、圆
相交的直线
和
,设
被圆
截得的弦长为
,
被圆
截得的弦长为
,问:
是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com