精英家教网 > 高中数学 > 题目详情

设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为
(1)求椭圆方程;
(2)过点的直线与椭圆交于不同的两点,当面积最大时,求

(1);(2).

解析试题分析:(1)由离心率和点.用待定系数法求出椭圆的方程.(2)利用点到直线的距离公式求出高及弦长公式求出弦长.分式形式的最值的求法要记牢.本题是对椭圆的基础知识的测试.
试题解析:(1)由题意可得,又,解得
所以椭圆方程为
(2)根据题意可知,直线的斜率存在,故设直线的方程为,设由方程组消去得关于的方程
由直线与椭圆相交于两点,则有,即
得:    由根与系数的关系得
  又因为原点到直线的距离,故的面积
,所以当且仅当时等号成立,
时,.
考点:1.待定系数法求椭圆方程.2.点到直线的距离.3.弦长公式.4.最值的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设直线与双曲线交于A、B,且以AB为直径的圆过原点,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右两焦点分别为是椭圆上一点,且在轴上方,

(1)求椭圆的离心率的取值范围;
(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的顶点在椭圆上,在直线上,且
(1)当边通过坐标原点时,求的长及的面积;
(2)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,为坐标原点,如果一个椭圆经过点P(3,),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.

(Ⅰ)若,求抛物线的方程;
(Ⅱ)求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且
(1)求双曲线的方程;
(2)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线,设被圆截得的弦长为被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案