已知椭圆的左右两焦点分别为
,
是椭圆上一点,且在
轴上方,
.
(1)求椭圆的离心率的取值范围;
(2)当取最大值时,过
的圆
的截
轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线上任一点
引圆
的两条切线,切点分别为
.试探究直线
是否过定点?若过定点,请求出该定点;否则,请说明理由.
(1);(2)
;(3)
.
解析试题分析:(1)由,
,
.即可求得
的取值范围.
(2)由(1)可得.以及
是圆的直径可得
.即可求出椭圆的方程.
(3)由(2)可得圆Q的方程.切点M,N所在的圆的方程上任一点坐标为P(x,y).由.即得
.则M,N所在的直线方程为.两圆方程对减即可得到.根据过定点的知识即可求出定点.本题涉及的知识点较多,渗透方程的思想,加强对几何图形的关系理解.
试题解析: , ∴
,
.
(1),∴
,在
上单调递减.
∴时,
最小
,
时,
最大
,∴
,∴
.
(2)当时,
,∴
,∴
.
∵,∴
是圆的直径,圆心是
的中点,∴在y轴上截得的弦长就是直径,∴
=6.又
,∴
.∴椭圆方程是
10分
(3)由(2)得到,于是圆心
,半径为3,圆
的方程是
.椭圆的右准线方程为
,,∵直线AM,AN是圆Q的两条切线,∴切点M,N在以AQ为直径的圆上.设A点坐标为
,∴该圆方程为
.∴直线MN是两圆的公共弦,两圆方程相减得:
,这就是直线MN的方程.该直线化为:
∴直线MN必过定点. 16分
考点:1.椭圆的离心率.2.椭圆的标准方程.3.两圆的公共线的方程.4.过定点问题.
科目:高中数学 来源: 题型:解答题
已知椭圆:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左、右焦点分别是
、
,
是椭圆右准线上的一点,线段
的垂直平分线过点
.又直线
:
按向量
平移后的直线是
,直线
:
按向量
平移后的直线是
(其中
)。
(1) 求椭圆的离心率的取值范围。
(2)当离心率最小且
时,求椭圆的方程。
(3)若直线与
相交于(2)中所求得的椭圆内的一点
,且
与这个椭圆交于
、
两点,
与这个椭圆交于
、
两点。求四边形ABCD面积
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知圆为圆上一动点,点
是线段
的垂直平分线与直线
的交点.
(1)求点的轨迹曲线
的方程;
(2)设点是曲线
上任意一点,写出曲线
在点
处的切线
的方程;(不要求证明)
(3)直线过切点
与直线
垂直,点
关于直线
的对称点为
,证明:直线
恒过一定点,并求定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知定点、
,动点N满足
(O为坐标原点),
,
,
,求点P的轨迹方程.
(2)如图,已知椭圆的上、下顶点分别为
,点
在椭圆上,且异于点
,直线
与直线
分别交于点
,
(ⅰ)设直线的斜率分别为
、
,求证:
为定值;
(ⅱ)当点运动时,以
为直径的圆是否经过定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线上有一点
,到焦点
的距离为
.
(Ⅰ)求及
的值.
(Ⅱ)如图,设直线与抛物线交于两点
,且
,过弦
的中点
作垂直于
轴的直线与抛物线交于点
,连接
.试判断
的面积是否为定值?若是,求出定值;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,斜率为的直线过抛物线
的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.
(Ⅰ).若,求抛物线的方程;
(Ⅱ).求△ABM面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com