(1)已知定点
、
,动点N满足
(O为坐标原点),
,
,
,求点P的轨迹方程.![]()
(2)如图,已知椭圆
的上、下顶点分别为
,点
在椭圆上,且异于点
,直线
与直线
分别交于点
,![]()
(ⅰ)设直线
的斜率分别为
、
,求证:
为定值;
(ⅱ)当点
运动时,以
为直径的圆是否经过定点?请证明你的结论.
(1)
;(2)(ⅰ)
;(ⅱ)定点
或
.
解析试题分析:(Ⅰ)由题意,先确定点N是MF1中点,然后由
确定|PM|=|PF1|,从而得到|∣PF1|-|PF2∣|=||PM|-|PF2||=|MF2|=2<|F1F2|,再根据双曲线的几何性质,即可得到点P的轨迹方程;(2)(ⅰ)设出点
,由斜率公式得到
的表达式,再根据点
在椭圆上,得到其为定值;(ⅱ)将以
为直径的圆上任一点坐标设出,即设点
,再根据过直径的弦所对的圆周角为直角这一几何性质得到
,从而得到点
的轨迹方程也即以
为直径的圆的方程为
.因为
的系数有参数
,故
,从而得到圆上定点
或
.即得到所求.
试题解析:(Ⅰ)连接ON∵
∴点N是MF1中点 ∴|MF2|=2|NO|=2
∵
∴F1M⊥PN ∴|PM|=|PF1|
∴|∣PF1|-|PF2∣|=||PM|-|PF2||=|MF2|=2<|F1F2|
由双曲线的定义可知:点P的轨迹是以F1,F2为焦点的双曲线.
点P的轨迹方程是
4分
(ⅰ)
,
,令
,则由题设可知
,
直线
的斜率
,
的斜率
,又点
在椭圆上,所以
,(
),从而有
.8分
(ⅱ)设点
是以
为直径的圆上任意一点,则
,又易求得
、
.所以
、
.故有
.又
,化简后得到以
为直径的圆的方程为
.
令
,解得
或
.
所以以
为直径的圆恒过定点
或
.
考点:1.点的轨迹方程;2.直线与圆锥曲线的位置关系;3.向量数量积的坐标表示.
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率与等轴双曲线的离心率互为倒数,直线
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右两焦点分别为
,
是椭圆上一点,且在
轴上方,![]()
.![]()
(1)求椭圆的离心率
的取值范围;
(2)当
取最大值时,过
的圆
的截
轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线
上任一点
引圆
的两条切线,切点分别为
.试探究直线
是否过定点?若过定点,请求出该定点;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,
为坐标原点,如果一个椭圆经过点P(3,
),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
抛物线
的焦点均在
轴上,
的中心和
的顶点均为坐标原点
从每条曲线上取两个点,将其坐标记录于下表中:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com