精英家教网 > 高中数学 > 题目详情

已知的顶点在椭圆上,在直线上,且
(1)当边通过坐标原点时,求的长及的面积;
(2)当,且斜边的长最大时,求所在直线的方程.

(1);(2)

解析试题分析:(1)由于直线过原点,故直线方程是已知的,可直接求出两点的坐标,求出线段的长,及边上的高和面积;(2)设直线方程为,把方程与椭圆方程联立,消去,得出关于的二次方程,两点的横坐标就是这个方程的两解,故必须满足,而线段的长,线段的长等于平行线间的距离,再利用勾股定理求出,这时一定是的函数,利用函数知识就可以求得结论。
试题解析:(1)因为,且过点,所以所在直线方程为
两点的坐标分别为
 得

又因为边上的高等于原点到直线的距离,
所以
(2)设直线的方程为
 得
因为在椭圆上,所以
两点的坐标分别为

所以
又因为的长等于点到直线的距离,即
所以
所以当时,边最长(这时),
此时所在直线方程为
考点:直线和椭圆相交,弦长问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆 的左、右焦点分别是,是椭圆右准线上的一点,线段的垂直平分线过点.又直线按向量平移后的直线是,直线按向量平移后的直线是 (其中)。
(1) 求椭圆的离心率的取值范围。
(2)当离心率最小且时,求椭圆的方程。
(3)若直线相交于(2)中所求得的椭圆内的一点,且与这个椭圆交于两点,与这个椭圆交于两点。求四边形ABCD面积的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知定点,动点N满足(O为坐标原点),,求点P的轨迹方程.

(2)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(ⅰ)设直线的斜率分别为,求证:为定值;
(ⅱ)当点运动时,以为直径的圆是否经过定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线上有一点,到焦点的距离为.
(Ⅰ)求的值.
(Ⅱ)如图,设直线与抛物线交于两点,且,过弦的中点作垂直于轴的直线与抛物线交于点,连接.试判断的面积是否为定值?若是,求出定值;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为
(1)求椭圆方程;
(2)过点的直线与椭圆交于不同的两点,当面积最大时,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知椭圆经过点,椭圆的离心率.

(1)求椭圆的方程;
(2)过点作两直线与椭圆分别交于相异两点.若的平分线与轴平行, 试探究直线的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.

查看答案和解析>>

同步练习册答案