精英家教网 > 高中数学 > 题目详情

已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于两点,求证:.

(1);(2)

解析试题分析:(1)由题意可知,抛物线的开口向右,所以可设抛物线的标准方程为:,因为抛物线过点,从而求出方程;(2)设出两点坐标,联立直线和抛物线的方程,化简整理为一元二次方程,根据韦达定理写出两根之和与两根之积,由斜率公式写出,利用两根和与两根之积求出其乘积.
试题解析:(1)设抛物线的标准方程为:,因为抛物线过点,所以
解得,所以抛物线的标准方程为:
(2)设两点的坐标分别为,由题意知:
 消去得: ,根据韦达定理知:
所以,

考点:本题主要考查了抛物线的标准方程,以及直线与抛物线的位置关系,考查了方程的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知的两顶点坐标,圆的内切圆,在边上的切点分别为(从圆外一点到圆的两条切线段长相等),动点的轨迹为曲线.

(1)求曲线的方程;
(2)设直线与曲线的另一交点为,当点在以线段为直径的圆上时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为椭圆上任意一点,为左右焦点.如图所示:

(1)若的中点为,求证
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆中心在原点,焦点在轴上,焦距为2,离心率为
(1)求椭圆的方程;
(2)设直线经过点(0,1),且与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的顶点在椭圆上,在直线上,且
(1)当边通过坐标原点时,求的长及的面积;
(2)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,为坐标原点,如果一个椭圆经过点P(3,),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点和短轴的两个端点构成边长为2的正方形.

(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相交于两点.点,记直线的斜率分别为,当最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,

(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线与x轴围成一个等腰三角形,说明理由.

查看答案和解析>>

同步练习册答案