已知椭圆:的左、右焦点和短轴的两个端点构成边长为2的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相交于,两点.点,记直线的斜率分别为,当最大时,求直线的方程.
(Ⅰ)椭圆的方程为;(Ⅱ)直线的方程为.
解析试题分析:(Ⅰ)由已知,椭圆:的左、右焦点和短轴的两个端点构成边长为2的正方形,所以,利用,可得,又椭圆的焦点在轴上,从而得椭圆的方程;(Ⅱ)需分直线的斜率是否为0讨论.①当直线的斜率为0时,则;②当直线的斜率不为0时,设,,直线的方程为,将代入,整理得.利用韦达定理列出.结合,,列出关于的函数,应用均值不等式求其最值,从而得的值,最后求出直线的方程.
试题解析:(Ⅰ)由已知得(2分),又,∴椭圆方程为(4分)
(Ⅱ)①当直线的斜率为0时,则; 6分
②当直线的斜率不为0时,设,,直线的方程为,
将代入,整理得.
则,. 8分
又,,
所以,=
10分.
令,则
所以当且仅当,即时,取等号. 由①②得,直线的方程为.13分.
考点:1.椭圆方程的求法;2.直线和椭圆位置关系中最值问题;3.均值不等式.
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为,准线为,点为抛物线C上的一点,且的外接圆圆心到准线的距离为.
(I)求抛物线C的方程;
(II)若圆F的方程为,过点P作圆F的2条切线分别交轴于点,求面积的最小值时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点A,B。已知点A的坐标为。若,求直线的倾斜角。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,已知椭圆经过点,椭圆的离心率.
(1)求椭圆的方程;
(2)过点作两直线与椭圆分别交于相异两点、.若的平分线与轴平行, 试探究直线的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
矩形的中心在坐标原点,边与轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线与,与,与的交点依次为.
(1)求以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段的(等分点从左向右依次为,线段的等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆直线与圆相切,且交椭圆于两点,是椭圆的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O为坐标原点,若求椭圆的方程;
(Ⅲ) 在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点,直线AS,BS与直线分别交于M,N两点,求线段MN的长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线的焦点为,准线为,,以为圆心的圆与相切于点,的纵坐标为,是圆与轴除外的另一个交点.
(I)求抛物线与圆的方程;
( II)已知直线,与交于两点,与交于点,且, 求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:,
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;
(3)过原点任意作两条互相垂直的直线与椭圆:相交于四点,设原点到四边形的一边距离为,试求时满足的条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com