精英家教网 > 高中数学 > 题目详情

已知抛物线的焦点为,准线为,点为抛物线C上的一点,且的外接圆圆心到准线的距离为

(I)求抛物线C的方程;
(II)若圆F的方程为,过点P作圆F的2条切线分别交轴于点,求面积的最小值时的值.

(I);(II).

解析试题分析:(I)先求圆心纵坐标,再由圆心到准线的距离,可求的值,从而得抛物线的方程;(II)先设过点斜率存在的直线方程,根据直线与圆相切,可得两切线的斜率关系,然后得两点坐标,可得,然后再求三角形PMN的面积,再利用导数判断面积的单调性而求最小值,再得的值.
试题解析:(I)的外接圆的圆心在直线OF,FP的中垂线交点上,且直线OF的中垂线为直线,则圆心的纵坐标为,                   1分
故到准线的距离为.         2分
从而p=2,即C的方程为.                  5分
(II)设过点P斜率存在的直线为,则点F(0,1)到直线的距离
。                7分
令d=1,则,所以
设两条切线PM,PN的斜率分别为,则
,             9分
且直线PM:,直线PN:,故
因此  11分
所以              12分
,则
,则 .
上单点递减,在上单调递增,因此
从而,此时.  15分
考点:1、抛物线的方程及性质;2、直线与圆的位置关系;3、直线与抛物线相交及与导数的综合应用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知的两顶点坐标,圆的内切圆,在边上的切点分别为(从圆外一点到圆的两条切线段长相等),动点的轨迹为曲线.

(1)求曲线的方程;
(2)设直线与曲线的另一交点为,当点在以线段为直径的圆上时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:对于两个双曲线,,若的实轴是的虚轴,的虚轴是的实轴,则称,为共轭双曲线.现给出双曲线和双曲线,其离心率分别为.
(1)写出的渐近线方程(不用证明);
(2)试判断双曲线和双曲线是否为共轭双曲线?请加以证明.
(3)求值:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,点A、B的坐标分别为,点C在x轴上方。
(1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程;
(2)过点P(m,0)作倾角为的直线交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为椭圆上任意一点,为左右焦点.如图所示:

(1)若的中点为,求证
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆中心在原点,焦点在轴上,焦距为2,离心率为
(1)求椭圆的方程;
(2)设直线经过点(0,1),且与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点和短轴的两个端点构成边长为2的正方形.

(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相交于两点.点,记直线的斜率分别为,当最大时,求直线的方程.

查看答案和解析>>

同步练习册答案