设抛物线的焦点为,准线为,,以为圆心的圆与相切于点,的纵坐标为,是圆与轴除外的另一个交点.
(I)求抛物线与圆的方程;
( II)已知直线,与交于两点,与交于点,且, 求的面积.
(I)抛物线为:,圆的方程为:; ( II) .
解析试题分析:(I)根据抛物线的方程与准线,可得,由的纵坐标为,的纵坐标为,即 ,,由题意可知:,则在等腰三角形中有或,由于不重合,则.则抛物线与圆的方程就得出.
(II)根据题意可得三角形是直角三角形,又因,则是的中点,即解得.
联立直线与抛物线方程得则由弦长公式得,又根据点到直线的距离得出到的距离,从而得出.
试题解析:(I)根据抛物线的定义:有由的纵坐标为,的纵坐标为
,,则,又由得
则抛物线为:,圆的方程为:
( II)由,
根据题意可得三角形是直角三角形,又因,则是的中点,即解得.
由,根据点到直线的距离得出到的距离,从而得出.
考点:1.抛物线的定义与抛物线与直线之间的关系;2.对弦长公式与点到直线距离的考查.
科目:高中数学 来源: 题型:解答题
已知椭圆:的左、右焦点和短轴的两个端点构成边长为2的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相交于,两点.点,记直线的斜率分别为,当最大时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:()的右焦点,右顶点,右准线且.
(1)求椭圆的标准方程;
(2)动直线:与椭圆有且只有一个交点,且与右准线相交于点,试探究在平面直角坐标系内是否存在点,使得以为直径的圆恒过定点?若存在,求出点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆抛物线的焦点均在轴上,的中心和 的顶点均为坐标原点从每条曲线上取两个点,将其坐标记录于下表中:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在轴上,且过点.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,
(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线、与x轴围成一个等腰三角形,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,动直线:与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且,,四边形面积S的求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.
(1)求椭圆方程.
(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com