精英家教网 > 高中数学 > 题目详情

如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,

(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线与x轴围成一个等腰三角形,说明理由.

(1);(2);(3)详见解析

解析试题分析:直线和圆锥曲线位置关系问题,一般要将直线方程和圆锥曲线方程联立,同时要注意其隐含条件(),得关于某一个未知数的一元二次方程,利用韦达定理建立参数的等量关系或者不等关系,从而确定参数的值或者取值范围,(1)由椭圆焦点在轴,先设椭圆标准方程为,由已知得关于 的方程组,解;(2)注意条件“平行于的直线交椭圆与两点”,设直线方程为y=x+m,与椭圆联立,得关于的一元二次方程,,得的取值范围(注意);(3)只需证明斜率互为相反数先设,则,,结合韦达定理证明
试题解析:(1)设椭圆方程为(a>b>0)
    ∴椭圆方程
(2)∵直线∥DM且在y轴上的截距为m,∴y=x+m

与椭圆交于A、B两点∴△=(2m)2-4(2m2-4)>0-2<m<2(m≠0);
(3)设直线MA、MB斜率分别为k1,k2,则只要证:k1+k2=0
设A(x1,y1),B(x2,y2),则k1=,k2=
由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4
而k1+k2=+=(*)
又y1=x1+m  y2=x2+m
∴(*)分子=(x1+m-1)(x2-2)+(x2+m-1)(x1-2)
=x1x2+(m-2)(x1+x2)-4(m-1)
=2m2-4+(m-2)(-m)-4(m-1)=0
∴k1+k2=0,证之.
考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、韦达定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆直线与圆相切,且交椭圆两点,是椭圆的半焦距,
(Ⅰ)求的值;
(Ⅱ)O为坐标原点,若求椭圆的方程;
(Ⅲ) 在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点,直线AS,BS与直线分别交于M,N两点,求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线的焦点为,准线为,以为圆心的圆相切于点的纵坐标为是圆轴除外的另一个交点.
(I)求抛物线与圆的方程;
( II)已知直线交于两点,交于点,且, 求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知抛物线的焦点坐标为,过的直线交抛物线两点,直线分别与直线相交于两点.

(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.

(1)求椭圆的方程;
(2)如图,是椭圆的顶点,是椭圆上除顶点外的任意点,直线轴于点,直线于点,设的斜率为的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;
(3)过原点任意作两条互相垂直的直线与椭圆相交于四点,设原点到四边形的一边距离为,试求满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)右顶点到右焦点的距离为,短轴长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点的直线与椭圆分别交于两点,若线段的长为,求直线的方程.

查看答案和解析>>

同步练习册答案