精英家教网 > 高中数学 > 题目详情

如图已知抛物线的焦点坐标为,过的直线交抛物线两点,直线分别与直线相交于两点.

(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.

(1);(2)证明过程详见解析.

解析试题分析:本题主要考查抛物线、直线的方程,以及直线与抛物线的位置关系,突出解析几何的基本思想和方法的考查:如数形结合思想、坐标化方法等.第一问,利用抛物线的标准方程,利用焦点坐标求出,代入即可;第二问,讨论直线垂直和不垂直轴2种情况,当直线垂直于轴时,2个三角形相似,面积比为定值,当直线不垂直于轴时,设出直线的方程,设出四个点坐标,利用直线与抛物线相交列出方程组,消参得到方程,利用两根之积得为定值,而面积比值与有关,所以也为定值.
试题解析:(1)由焦点坐标为 可知
所以,所以抛物线的方程为                     5分
(2)当直线垂直于轴时,相似,
所以,                        7分
当直线与轴不垂直时,设直线AB方程为,

整理得,                      9分
所以,                                        10分
,
综上                               12分
考点:1.抛物线的标准方程;2.直线方程;3.根与系数关系;4.三角形面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的右焦点,右顶点,右准线

(1)求椭圆的标准方程;
(2)动直线与椭圆有且只有一个交点,且与右准线相交于点,试探究在平面直角坐标系内是否存在点,使得以为直径的圆恒过定点?若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,

(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线与x轴围成一个等腰三角形,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且
(Ⅰ)求双曲线的方程;
(Ⅱ)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线,设被圆截得的弦长为被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.

(I)求椭圆C的方程;
(II)如图,动直线与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且,四边形面积S的求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,动点到两点的距离之和等于4,设点的轨迹为曲线C,直线过点且与曲线C交于A,B两点.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,分别是椭圆的顶点,过坐标原点的直线交椭圆于两点,其中在第一象限.过轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为

(Ⅰ)当直线平分线段时,求的值;
(Ⅱ)当时,求点到直线的距离;
(Ⅲ)对任意,求证:

查看答案和解析>>

同步练习册答案