如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.
(1)求点的轨迹曲线的方程;
(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)
(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
(1);(2);(3)证明见解析,定点为.
解析试题分析:(1)本题动点依赖于圆上中,本来这种问题可以用动点转移法求轨迹方程,但本题用动点转移法会很繁,考虑到圆的半径不变,垂直平分线的对称性,我们可以看出
,是定值,而且,因此点轨迹是椭圆,这样我们可以利用椭圆标准方程写出所求轨迹方程;(2)圆锥曲线的过其上点的切线方程,椭圆,切线为,
双曲线,切线为,抛物线,切线为;(3)这题考查同学们的计算能力,现圆锥曲线切线有关的问题,由(2)我们知道切线斜率为,则直线的斜率为,又过点,可以写出直线方程,然后求出点关于直线的对称点的坐标,从而求出直线的方程,接着可从的方程观察出是不是过定点,过哪个定点?这里一定要小心计算.
试题解析:(1)点是线段的垂直平分线,∴
∴动点N的轨迹是以点C(-1,0),A(1,0)为焦点的椭圆.
椭圆长轴长为焦距2c=2.
∴曲线E的方程为 5′
(2)曲线在点处的切线的方程是. 8′
(3)直线的方程为,即 .
设点关于直线的对称点的坐标为,
则,解得
直线PD的斜率为
从而直线PD的方程为:
即,从而直线PD恒过定点. 16′
考点:(1)椭圆的定义;(2)椭圆的切线方程;(3)垂直,对称,直线过定点问题.
科目:高中数学 来源: 题型:解答题
已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,
(Ⅰ)求椭圆E的方程;
(Ⅱ)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:.
(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.
①证明直线与轴交点的位置与无关;
②若∆面积是∆面积的5倍,求的值;
(2)若圆:.是过点的两条互相垂直的直线,其中交圆于、两点,交椭圆于另一点.求面积取最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的长轴为AB,过点B的直线与
轴垂直,椭圆的离心率,F为椭圆的左焦点,且
(1)求此椭圆的标准方程;
(2)设P是此椭圆上异于A,B的任意一点, 轴,H为垂足,延长HP到点Q,使得HP=PQ,连接AQ并延长交直线于点,为的中点,判定直线与以为直径的圆O位置关系。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(Ⅰ)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(Ⅱ)若的面积为,求向量的夹角;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左右两焦点分别为,是椭圆上一点,且在轴上方,.
(1)求椭圆的离心率的取值范围;
(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
)如图,椭圆:,、、、为椭圆的顶点
(Ⅰ)若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆方程;
(Ⅱ)已知:直线相交于,两点(不是椭圆的左右顶点),并满足 试研究:直线是否过定点? 若过定点,请求出定点坐标,若不过定点,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ)求抛物线的方程;
(Ⅱ)设点为直线上的点,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com