精英家教网 > 高中数学 > 题目详情

已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(Ⅰ)试问在轴上是否存在不同于点的一点,使得轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(Ⅱ)若的面积为,求向量的夹角;

(Ⅰ)存在T(1,0);(Ⅱ)向量的夹角

解析试题分析:(Ⅰ)试问在轴上是否存在不同于点的一点,使得轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由,这是一个探索性命题,解这一类问题,一般都假设其存在,若能求出的坐标,就存在这样的点,若不能求出的坐标,就不存在这样的点,本题假设存在满足题意,轴所在的直线所成的锐角相等,则它们的斜率互为相反数,结合直线与抛物线的位置关系,采用设而不求的方法即可解决;(Ⅱ)求向量的夹角,可根据夹角公式,分别求出,与即可.
试题解析:(Ⅰ)由题意知:抛物线方程为: 
  直线代入

假设存在满足题意,则
    

 存在T(1,0)
(Ⅱ)

(13分)
考点:直线与抛物线位置关系,向量夹角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆过定点,圆心在抛物线上,为圆轴的交点.
(1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论.
(3)当圆心在抛物线上运动时,记,求的最大值,并求出此时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆 的离心率为,点,0),(0,)原点到直线的距离为

(1) 求椭圆的方程;
(2) 设点为(,0),点在椭圆上(与均不重合),点在直线上,若直线的方程为,且,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点在以为焦点的椭圆上,且构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且
. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.

(1)求点的轨迹曲线的方程;
(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)
(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若
(Ⅰ)求此椭圆的方程;
(Ⅱ)直线与椭圆交于两点,若弦的中点为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F1,F2分别是椭圆C:=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°

(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求a,b的值

查看答案和解析>>

同步练习册答案