已知圆
过定点
,圆心
在抛物线
上,
、
为圆
与
轴的交点.
(1)当圆心
是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(2)当圆心
在抛物线上运动时,
是否为一定值?请证明你的结论.
(3)当圆心
在抛物线上运动时,记
,
,求
的最大值,并求出此时圆
的方程.
(1)
;(2)是定值,为2;(3)
取得最大值
,此时圆
的方程为
.
解析试题分析:(1)这是关于圆的基本计算问题,圆心是抛物线的顶点
,又圆过点
,可得圆半径为
,就得出了圆的方程,抛物线的准线为
,与圆相交弦长可用直角三角形法求解,弦心距,弦的一半,相应半径可构成一个直角三角形,应用勾股定理易得;(2)圆心在抛物线上运动,可设圆心坐标为
,与(1)同法可得弦长
,当然本题中弦在
轴上,故可在圆方程中令
,求出
,也即求出![]()
为定值;(3)根据圆的性质,由(2)可得
两点的坐标为
,这样
就可用
来表示,可求得
,
时,有
,
时,利用基本不等式有
,从而![]()
(当且仅当
,即
时等号成立),故所求最大值为
.
试题解析:(1)抛物线
的顶点为
,准线方程为
,圆的半径等于1,圆
的方程为
.弦长
4分
(2)设圆心
,则圆
的半径
,
圆
的方程是为:
6分
令
,得
,得
,
,![]()
是定值. 8分
(3)由(2)知,不妨设
,
,
,
.
. 11分
当
时,
. 12分
当
时,
.
当且仅当
时,等号成立 14分
所以当
时,
取得最大值
,此时圆
的方程为
.
16分
考点:(1)抛物线的几何性质,圆的弦长公式;(2)圆的弦长;(3)基本不等式与最大值问题.
科目:高中数学 来源: 题型:解答题
抛物线
在点
,
处的切线垂直相交于点
,直线
与椭圆
相交于
,
两点.![]()
(1)求抛物线
的焦点
与椭圆
的左焦点
的距离;
(2)设点
到直线
的距离为
,试问:是否存在直线
,使得
,
,
成等比数列?若存在,求直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线
与椭圆E相交于P,Q两点,且
的最大值为
.![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)设
,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,已知抛物线
,设点
,
,
为抛物线
上的动点(异于顶点),连结
并延长交抛物线
于点
,连结
、
并分别延长交抛物线
于点
、
,连结
,设
、
的斜率存在且分别为
、
.![]()
(1)若
,
,
,求
;
(2)是否存在与
无关的常数
,是的
恒成立,若存在,请将
用
、
表示出来;若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,
,动点
满足
.
(1)求动点
的轨迹
的方程;
(2)在直线
:
上取一点
,过点
作轨迹
的两条切线,切点分别为
.问:是否存在点
,使得直线
//
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是椭圆E:
的两个焦点,抛物线
的焦点为椭圆E的一个焦点,直线y=
上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,
(Ⅰ)求椭圆E的方程;
(Ⅱ)如图,过点
的动直线
交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知坐标平面内
:
,
:
.动点P与
外切与
内切.
(1)求动圆心P的轨迹
的方程;
(2)若过D点的斜率为2的直线与曲线
交于两点A、B,求AB的长;
(3)过D的动直线与曲线
交于A、B两点,线段中点为M,求M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点为
,点
是点
关于
轴的对称点,过点
的直线交抛物线于
两点。
(Ⅰ)试问在
轴上是否存在不同于点
的一点
,使得
与
轴所在的直线所成的锐角相等,若存在,求出定点
的坐标,若不存在说明理由。
(Ⅱ)若
的面积为
,求向量
的夹角;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com