已知抛物线
与直线
相交于A、B 两点.
(1)求证:
;
(2)当
的面积等于
时,求
的值.
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
的左、右焦点分别为
、
,椭圆上的点
满足
,且
的面积
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在直线
,使
与椭圆
交于不同的两点
、
,且线段
恰被直线
平分?若存在,求出
的斜率取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
过定点
,圆心
在抛物线
上,
、
为圆
与
轴的交点.
(1)当圆心
是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(2)当圆心
在抛物线上运动时,
是否为一定值?请证明你的结论.
(3)当圆心
在抛物线上运动时,记
,
,求
的最大值,并求出此时圆
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的两个焦点是F1(
c,0),F2(c,0)(c>0)。
(I)若直线
与椭圆C有公共点,求
的取值范围;
(II)设E是(I)中直线与椭圆的一个公共点,求|EF1|+|EF2|取得最小值时,椭圆的方程;
(III)已知斜率为k(k≠0)的直线l与(II)中椭圆交于不同的两点A,B,点Q满足
且
,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,
,直线AG,BG相交于点G,且它们的斜率之积是
.
(Ⅰ)求点G的轨迹
的方程;
(Ⅱ)圆
上有一个动点P,且P在x轴的上方,点
,直线PA交(Ⅰ)中的轨迹
于D,连接PB,CD.设直线PB,CD的斜率存在且分别为
,
,若
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分) 已知椭圆C的中心在原点,离心率等于
,它的一个短轴端点点恰好是抛物线
的焦点。![]()
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为
,求四边形APBQ面积的最大值;
②当A、B运动时,满足
=
,试问直线AB的斜率是否为定值,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
:
的离心率为
,点
(
,0),
(0,
)原点
到直线
的距离为
。![]()
(1) 求椭圆
的方程;
(2) 设点
为(
,0),点
在椭圆
上(与
、
均不重合),点
在直线
上,若直线
的方程为
,且
,试求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线
的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线
交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得
始终平分
?若存在,求出
点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,焦点在
轴上,椭圆
上的点到焦点距离的最大值为
,最小值为
.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线
与椭圆交于不同的两点
、
,且线段
的垂直平分线过定点
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com