已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线
的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线
交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得
始终平分
?若存在,求出
点坐标;若不存在,请说明理由.
(Ⅰ)
;(Ⅱ)
.
解析试题分析:(Ⅰ)设椭圆的标准方程为:
,先由已知条件“短轴长为
”,求得
,再由已知条件“有一个焦点与抛物线
的焦点重合”,求得
,则
,从而得到椭圆方程;(Ⅱ)设直线方程为:
,与椭圆方程联立方程组求得
(※),假设存在定点
使得
始终平分
,则有
,将对应点的坐标代入,结合直线方程以及(※)化简求得
,从而无论
如何取值,只要
就可保证式子成立,进而得出
点坐标.
试题解析:(Ⅰ)∵椭圆的短轴长为
,
∴
,解得
,
又抛物线
的焦点为
,
∴
,则
,
∴所求椭圆方程为:
.
(Ⅱ)设
:
,代入椭圆方程整理得:![]()
则
,假设存在定点
使得
始终平分
,
则![]()
![]()
![]()
①,
要使得①对于
恒成立,则
,
故存在定点
使得
始终平分
,它的坐标为
.
考点:1.椭圆的标准方程;2.抛物线的性质;3.根与系数的关系
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,已知抛物线
,设点
,
,
为抛物线
上的动点(异于顶点),连结
并延长交抛物线
于点
,连结
、
并分别延长交抛物线
于点
、
,连结
,设
、
的斜率存在且分别为
、
.![]()
(1)若
,
,
,求
;
(2)是否存在与
无关的常数
,是的
恒成立,若存在,请将
用
、
表示出来;若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
.![]()
(1)椭圆
的短轴端点分别为
(如图),直线
分别与椭圆
交于
两点,其中点
满足
,且
.
①证明直线
与
轴交点的位置与
无关;
②若∆
面积是∆
面积的5倍,求
的值;
(2)若圆
:
.
是过点
的两条互相垂直的直线,其中
交圆
于
、
两点,
交椭圆
于另一点
.求
面积取最大值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的长轴为AB,过点B的直线
与![]()
轴垂直,椭圆的离心率
,F为椭圆的左焦点,且![]()
![]()
(1)求此椭圆的标准方程;
(2)设P是此椭圆上异于A,B的任意一点,
轴,H为垂足,延长HP到点Q,使得HP=PQ,连接AQ并延长交直线
于点
,
为
的中点,判定直线
与以
为直径的圆O位置关系。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点为
,点
是点
关于
轴的对称点,过点
的直线交抛物线于
两点。
(Ⅰ)试问在
轴上是否存在不同于点
的一点
,使得
与
轴所在的直线所成的锐角相等,若存在,求出定点
的坐标,若不存在说明理由。
(Ⅱ)若
的面积为
,求向量
的夹角;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
)如图,椭圆
:
,
、
、
、
为椭圆
的顶点 ![]()
(Ⅰ)若椭圆
上的点
到焦点距离的最大值为
,最小值为
,求椭圆方程;
(Ⅱ)已知:直线
相交于
,
两点(
不是椭圆的左右顶点),并满足
试研究:直线
是否过定点? 若过定点,请求出定点坐标,若不过定点,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
,若椭圆
的右顶点为圆
的圆心,离心率为
.
(1)求椭圆
的方程;
(2)若存在直线
,使得直线
与椭圆
分别交于
两点,与圆
分别交于
两点,点
在线段
上,且
,求圆
的半径
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com