精英家教网 > 高中数学 > 题目详情

已知椭圆.

(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.
①证明直线轴交点的位置与无关;
②若∆面积是∆面积的5倍,求的值;
(2)若圆:.是过点的两条互相垂直的直线,其中交圆两点,交椭圆于另一点.求面积取最大值时直线的方程.

(1)①交点为;②;(2) .

解析试题分析:(1)①本题方法很容易想到,主要考查计算推理能力,写出直线的方程,然后把直线方程与椭圆方程联立,求得点坐标,同理求得点坐标,从而得到直线的方程,令,求出,与无关;②两个三角形∆与∆有一对对顶角,故面积用公式表示,那么面积比就为,即,这个比例式可以转化为点的横坐标之间(或纵坐标)的关系式,从而求出;(2)仍采取基本方法,设的方程为,则的方程为,直线与圆相交于,弦的长可用直角三角形法求,(弦心距,半径,半个弦长构成一个直角三角形),的高为是直线与椭圆相交的弦长,用公式来求,再借助于基本不等式求出最大值及相应的值,也即得出的方程.
试题解析:(1)①因为,M (m,),且
直线AM的斜率为k1=,直线BM斜率为k2=,
直线AM的方程为y= ,直线BM的方程为y=,




据已知,
直线EF的斜率
直线EF的方程为 ,
令x=0,得 EF与y轴交点的位置与m无关.
,,,
,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线C:,定点M(0,5),直线轴交于点F,O为原点,若以OM为直径的圆恰好过与抛物线C的交点.
(1)求抛物线C的方程;
(2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于,求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的两个焦点是F1(c,0),F2(c,0)(c>0)。
(I)若直线与椭圆C有公共点,求的取值范围;
(II)设E是(I)中直线与椭圆的一个公共点,求|EF1|+|EF2|取得最小值时,椭圆的方程;
(III)已知斜率为k(k≠0)的直线l与(II)中椭圆交于不同的两点A,B,点Q满足   ,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分) 已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线 的焦点。

(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A、B运动时,满足,试问直线AB的斜率是否为定值,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆 的离心率为,点,0),(0,)原点到直线的距离为

(1) 求椭圆的方程;
(2) 设点为(,0),点在椭圆上(与均不重合),点在直线上,若直线的方程为,且,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设直线与双曲线交于A、B,且以AB为直径的圆过原点,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.

(1)求点的轨迹曲线的方程;
(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)
(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C:过点(0,4),离心率为
(Ⅰ)求C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.

查看答案和解析>>

同步练习册答案