精英家教网 > 高中数学 > 题目详情

设椭圆C:过点(0,4),离心率为
(Ⅰ)求C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.

解析试题分析:(1)椭圆的方程是标准方程,已知椭圆过点,这必定是椭圆的顶点,从而易知(当然也可直接把代入椭圆方程解出),再由离心率为,可求出.得椭圆的方程.(2)这是直线与椭圆相交求相交弦长的问题,我们可以用相交弦长公式求解,这里是直线的斜率,是交点的横坐标.
试题解析:(Ⅰ)将(0,4)代入C的方程得 ∴,又 得, 
 ∴C的方程为
( Ⅱ)过点且斜率为的直线方程为
设直线与C的交点为A,B,将直线方程代入C的方程,得,即 
.
考点:(1)椭圆的顶点与离心率;(2)直线与椭圆相交弦长问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆.

(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.
①证明直线轴交点的位置与无关;
②若∆面积是∆面积的5倍,求的值;
(2)若圆:.是过点的两条互相垂直的直线,其中交圆两点,交椭圆于另一点.求面积取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)如图,椭圆为椭圆的顶点

(Ⅰ)若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆方程;
(Ⅱ)已知:直线相交于两点(不是椭圆的左右顶点),并满足 试研究:直线是否过定点? 若过定点,请求出定点坐标,若不过定点,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.
(1)求证:OA⊥OB;
(2)当DAOB的面积等于时,求k的值. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.

(Ⅰ)若,求抛物线的方程;
(Ⅱ)求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,若椭圆的右顶点为圆的圆心,离心率为.
(1)求椭圆的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ)求抛物线的方程;
(Ⅱ)设点为直线上的点,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,直线l与抛物线相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求的值;
(II)如果,证明直线l必过一定点,并求出该定点坐标.

查看答案和解析>>

同步练习册答案