已知顶点在原点
,焦点在
轴上的抛物线过点
.
(1)求抛物线的标准方程;
(2)若抛物线与直线
交于
、
两点,求证:
.
科目:高中数学 来源: 题型:解答题
(13分) 已知椭圆C的中心在原点,离心率等于
,它的一个短轴端点点恰好是抛物线
的焦点。![]()
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为
,求四边形APBQ面积的最大值;
②当A、B运动时,满足
=
,试问直线AB的斜率是否为定值,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知圆
为圆上一动点,点
是线段
的垂直平分线与直线
的交点.![]()
(1)求点
的轨迹曲线
的方程;
(2)设点
是曲线
上任意一点,写出曲线
在点
处的切线
的方程;(不要求证明)
(3)直线
过切点
与直线
垂直,点
关于直线
的对称点为
,证明:直线
恒过一定点,并求定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
上有一点
,到焦点
的距离为
.
(Ⅰ)求
及
的值.
(Ⅱ)如图,设直线
与抛物线交于两点
,且
,过弦
的中点
作垂直于
轴的直线与抛物线交于点
,连接
.试判断
的面积是否为定值?若是,求出定值;否则,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,焦点在
轴上,椭圆
上的点到焦点距离的最大值为
,最小值为
.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线
与椭圆交于不同的两点
、
,且线段
的垂直平分线过定点
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
矩形
的中心在坐标原点,边
与
轴平行,
=8,
=6.
分别是矩形四条边的中点,
是线段
的四等分点,
是线段
的四等分点.设直线
与
,
与
,
与
的交点依次为
.![]()
(1)以
为长轴,以
为短轴的椭圆Q的方程;
(2)根据条件可判定点
都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段
的
(
等分点从左向右依次为
,线段
的
等分点从上向下依次为
,那么直线
与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com