精英家教网 > 高中数学 > 题目详情

已知抛物线C:,定点M(0,5),直线轴交于点F,O为原点,若以OM为直径的圆恰好过与抛物线C的交点.
(1)求抛物线C的方程;
(2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于,求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动.

(1)抛物线C的方程为;(2)详见解析.

解析试题分析:(1)求抛物线C的方程,只需求出的值即可,由已知可知直线轴的交点为抛物线C的焦点,又以为直径的圆恰好过直线抛物线的交点,设交点为,则,故,即,解得,从而可得抛物线C的方程;(2),求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动,找出交点点的坐标即可,故需求出过两点的切线的方程,而有关,故可设出直线AB的方程为(斜率一定存在),再设出,,利用三点共线可得,再由导数的几何意义,求出斜率,得过点的切线方程为:,过点的切线方程为:,解出,结合,得,即得,从而得证。
试题解析:(1)直线轴的交点为抛物线C的焦点,又以为直径的圆恰好过直线抛物线的交点,,
所以抛物线C的方程为
(2)由题意知直线AB的斜率一定存在,设直线AB的方程为,
又设,
共线,,
,,同理可求
,过点的切线的斜率为,切线方程为:,
同理得过点的切线方程为:,联立得:

,即点Q在定直线上运动.
考点:抛物线方程,直线与抛物线的综合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C=1(ab>0)的离心率为,其左、右焦点分别是F1F2,过点F1的直线l交椭圆CEG两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点AB,设P为椭圆上一点,且满足t (O为坐标原点),当||<时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点的直线与椭圆C相交于A、B两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,过点的直线交抛物线于点.
(Ⅰ)若(点在第一象限),求直线的方程;
(Ⅱ)求证:为定值(点为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且的最大值为.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是抛物线上的两个点,点的坐标为,直线的斜率为k, 为坐标原点.
(Ⅰ)若抛物线的焦点在直线的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知抛物线,设点为抛物线上的动点(异于顶点),连结并延长交抛物线于点,连结并分别延长交抛物线于点,连结,设的斜率存在且分别为.

(1)若,求
(2)是否存在与无关的常数,是的恒成立,若存在,请将表示出来;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,
(Ⅰ)求椭圆E的方程;
(Ⅱ)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆.

(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.
①证明直线轴交点的位置与无关;
②若∆面积是∆面积的5倍,求的值;
(2)若圆:.是过点的两条互相垂直的直线,其中交圆两点,交椭圆于另一点.求面积取最大值时直线的方程.

查看答案和解析>>

同步练习册答案