已知抛物线C:
,定点M(0,5),直线
与
轴交于点F,O为原点,若以OM为直径的圆恰好过
与抛物线C的交点.
(1)求抛物线C的方程;
(2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于
,求证: 抛物线C分别过
两点的切线的交点Q在一条定直线上运动.
(1)抛物线C的方程为
;(2)详见解析.
解析试题分析:(1)求抛物线C的方程,只需求出
的值即可,由已知可知直线
与
轴的交点
为抛物线C的焦点,又以
为直径的圆恰好过直线
抛物线的交点,设交点为
,则
,故
,即
,解得
,从而可得抛物线C的方程;(2),求证: 抛物线C分别过
两点的切线的交点Q在一条定直线上运动,找出交点
点的坐标即可,故需求出过
两点的切线的方程,而
与
有关,故可设出直线AB的方程为
(斜率一定存在),再设出
,
,利用三点共线可得
,
,再由导数的几何意义,求出斜率,得过点
的切线方程为:
,过点
的切线方程为:
,解出
,结合
,得
,即得
,从而得证。
试题解析:(1)
直线
与
轴的交点
为抛物线C的焦点,又以
为直径的圆恰好过直线
抛物线的交点,
,![]()
所以抛物线C的方程为![]()
(2)由题意知直线AB的斜率一定存在,设直线AB的方程为
,
又设
,![]()
共线,
,![]()
![]()
,
,同理可求![]()
,
过点
的切线的斜率为
,切线方程为:
,
同理得过点
的切线方程为:
,联立得:![]()
由![]()
,即点Q在定直线
上运动.
考点:抛物线方程,直线与抛物线的综合问题.
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率为
,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4
.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足
+
=t
(O为坐标原点),当|
-
|<
时,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点
的直线
与椭圆C相交于A、B两点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线
与椭圆E相交于P,Q两点,且
的最大值为
.![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)设
,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是抛物线
上的两个点,点
的坐标为
,直线
的斜率为k,
为坐标原点.
(Ⅰ)若抛物线
的焦点在直线
的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且
,过
两点分别作W的切线,记两切线的交点为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,已知抛物线
,设点
,
,
为抛物线
上的动点(异于顶点),连结
并延长交抛物线
于点
,连结
、
并分别延长交抛物线
于点
、
,连结
,设
、
的斜率存在且分别为
、
.![]()
(1)若
,
,
,求
;
(2)是否存在与
无关的常数
,是的
恒成立,若存在,请将
用
、
表示出来;若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是椭圆E:
的两个焦点,抛物线
的焦点为椭圆E的一个焦点,直线y=
上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,
(Ⅰ)求椭圆E的方程;
(Ⅱ)如图,过点
的动直线
交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
.![]()
(1)椭圆
的短轴端点分别为
(如图),直线
分别与椭圆
交于
两点,其中点
满足
,且
.
①证明直线
与
轴交点的位置与
无关;
②若∆
面积是∆
面积的5倍,求
的值;
(2)若圆
:
.
是过点
的两条互相垂直的直线,其中
交圆
于
、
两点,
交椭圆
于另一点
.求
面积取最大值时直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com