已知两点及,点在以、为焦点的椭圆上,且、、构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,
. 求四边形面积的最大值.
(1);(2)
解析试题分析:(1)确定椭圆标准方程 ,先定位后定量.由等差中项得,根据椭圆定义,得,又,所以可求,由椭圆焦点在轴,写出椭圆方程;(2)将直线方程和椭圆方程联立,并利用列方程,得的等式,求四边形面积的最大值,关键在于建立关于面积的目标函数,然后确定函数的最大值即可,分和讨论,当时,结合平面几何知识,得(其中表示两焦点到直线的距离),再结合得关于的函数,并求其范围;当时,该四边形是矩形,求其面积,从而确定的范围,进而确定最大值.
试题解析:(1)依题意,设椭圆的方程为.
构成等差数列,
, .
又,.
椭圆的方程为.
(2) 将直线的方程代入椭圆的方程中,得,由直线与椭圆仅有一个公共点知,,化简得:.
设,, (法一)当时,设直线的倾斜角为,则,,
,
,当时,,,.当时,四边形是矩形,.所以四边形面积的最大值为.
(法二),
.
.
四边形
科目:高中数学 来源: 题型:解答题
已知点,,动点满足.
(1)求动点的轨迹的方程;
(2)在直线:上取一点,过点作轨迹的两条切线,切点分别为.问:是否存在点,使得直线//?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的离心率为,在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的方程为,双曲线的两条渐近线为、.过椭圆的右焦点作直线,使,又与交于点,设与椭圆的两个交点由上至下依次为、.
(1)若与的夹角为,且双曲线的焦距为,求椭圆的方程;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(Ⅰ)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(Ⅱ)若的面积为,求向量的夹角;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在求出点坐标;若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆的方程;
(2)若为椭圆的动点,为过且垂直于轴的直线上的点,(为椭圆的离心率),求点的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com