已知动圆经过点,且和直线相切,
(1)求动圆圆心的轨迹C的方程;
(2)已知曲线C上一点M,且5,求M点的坐标.
科目:高中数学 来源: 题型:解答题
已知两点及,点在以、为焦点的椭圆上,且、、构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,
. 求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线:和⊙:,过抛物线上一点作两条直线与⊙相切于、两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为.
(1)求抛物线的方程;
(2)当的角平分线垂直轴时,求直线的斜率;
(3)若直线在轴上的截距为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于、两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°
(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求a,b的值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图示:已知抛物线的焦点为,过点作直线交抛物线于、两点,经过、两点分别作抛物线的切线、,切线与相交于点.
(1)当点在第二象限,且到准线距离为时,求;
(2)证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)设为平面上的点,满足:存在过点的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知经过点A(-4,0)的动直线l与抛物线G:相交于B、C,当直线l的斜率是时,.
(Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com