精英家教网 > 高中数学 > 题目详情

已知经过点A(-4,0)的动直线l与抛物线G:相交于B、C,当直线l的斜率是时,
(Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.

(Ⅰ);(Ⅱ)

解析试题分析:该题考察抛物线的方程、韦达定理、直线和抛物线的位置关系、向量等基础知识,考察数形结合、综合分析和解决问题能力、基本运算能力,(Ⅰ)求直线的方程:,和抛物线联立,得
,代入 向量式中,得,然后联立
可得,∴抛物线方程为;(Ⅱ)设直线的方程:,线段的中点,将联立,可得,因为直线与抛物线交与两点,所以,可得,再表示中点,进而可求线段的中垂线方程,令,可得其在轴的截距,求其值域即可.
试题解析:(1)设,由已知k1时,l方程为
即x=2y-4.


又∵
                                                     5分
由p>0得,即抛物线方程为:
(2)设l:,BC中点坐标为
得:
∴x0=2k,y0=k(x0+4)=2k2+4k.
∴BC的中垂线方程为y?2k2?4k=?(x?2k)
∴BC的中垂线在y轴上的截距为:b=2k2+4k+2=2(k+1)2
对于方程①由△=16k2+64k>0得:
∴                                          12分

考点:1、抛物线的标准方程;2、韦达定理;3、直线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知动圆经过点,且和直线相切,
(1)求动圆圆心的轨迹C的方程;
(2)已知曲线C上一点M,且5,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别是,离心率为椭圆上任一点,且的最大面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设斜率为的直线交椭圆两点,且以为直径的圆恒过原点,若实数满足条件,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为)的直线与椭圆相交于两点,直线分别交直线 于两点,线段的中点为.记直线的斜率为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线的焦点为,其准线与轴的交点为,过点的直线交抛物线于两点.
(1)若直线的斜率为,求证:
(2)设直线的斜率分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC中, 点A,B的坐标分别为A(-,0),B(,0)点C在x轴上方.
(Ⅰ)若点C坐标为(,1),求以A,B为焦点且经过点C的椭圆的方程:
(Ⅱ)过点P(m,0)作倾斜角为的直线l交(1)中曲线于M,N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N

(1)求的值;
(2)记直线MN的斜率为,直线AB的斜率为 证明:为定值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,焦距为,且经过点,直线交椭圆于不同的两点A,B.
(1)求的取值范围;,
(2)若直线不经过点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴两端点分别为是椭圆上的动点,以为一边在轴下方作矩形,使于点于点

(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;
(Ⅱ)如图(2),若,试证明:成等比数列.

查看答案和解析>>

同步练习册答案