精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,焦点在轴上,焦距为,且经过点,直线交椭圆于不同的两点A,B.
(1)求的取值范围;,
(2)若直线不经过点,求证:直线的斜率互为相反数.

(1);(2)证明过程详见解析.

解析试题分析:本题主要考查椭圆的标准方程、韦达定理等基础知识,考查运算求解能力、综合分析和解决问题的能力.第一问,用待定系数法,先设出椭圆方程,根据焦距和椭圆过,解出,得到椭圆方程,由于直线与椭圆有2个交点,所以联立得到的关于的方程有2个不相等实根,所以利用求解;第二问,分析题意得只需证明,设出点坐标,利用第一问得出的关于的方程找到,将化简,把的结果代入即可得证.
试题解析:(1)设椭圆的方程为,因为,所以
又因为椭圆过点,所以,解得,故椭圆方程为.   3分
代入并整理得
,解得.        6分
(2)设直线的斜率分别为,只要证明.
,则.       9分

分子


所以直线的斜率互为相反数.        12分
考点:1.椭圆的标准方程;2.韦达定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)设为平面上的点,满足:存在过点的无穷多对互相垂直的直线,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知经过点A(-4,0)的动直线l与抛物线G:相交于B、C,当直线l的斜率是时,
(Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的左顶点为是椭圆上异于点的任意一点,点与点 关于点对称.

(1)若点的坐标为,求的值;
(2)若椭圆上存在点,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点和上下两个顶点是一个边长为2且∠F1B1F2的菱形的四个顶点.
(1)求椭圆的方程;
(2)过右焦点F2 ,斜率为)的直线与椭圆相交于两点,A为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为.求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.
(1) 求椭圆方程.
(2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,分别是椭圆的顶点,过坐标原点的直线交椭圆于两点,其中在第一象限.过轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为

(Ⅰ)当直线平分线段时,求的值;
(Ⅱ)当时,求点到直线的距离;
(Ⅲ)对任意,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线的参数方程为
以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
⑴ 求曲线的普通方程和曲线的直角坐标方程;
⑵ 当时,曲线相交于两点,求以线段为直径的圆的直角坐标方程.

查看答案和解析>>

同步练习册答案