如图,在平面直角坐标系中,、分别是椭圆的顶点,过坐标原点的直线交椭圆于、两点,其中在第一象限.过作轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为.
(Ⅰ)当直线平分线段时,求的值;
(Ⅱ)当时,求点到直线的距离;
(Ⅲ)对任意,求证:.
(Ⅰ);(Ⅱ);(Ⅲ)详见解析
解析试题分析:(Ⅰ)求出点、的中点坐标,再用斜率公式可求得的值;(Ⅱ)求出直线的方程,再用点到直线的距离公式可求得点到直线的距离;
(Ⅲ)思路一:圆锥曲线题型的一个基本处理方法是设而不求,其核心是利用 ----(*).要证明,只需证明它们的斜率之积为-1. 但直接求它们的积,不好用(*)式,此时需要考虑转化.
思路二:设,然后用表示出的坐标.这种方法要注意直线的方程应设为: ,若用点斜式,则运算量大为增加.
此类题极易在运算上出错,需倍加小心.
试题解析:(Ⅰ)由题设知: ,所以线段的中点为,
由于直线平分线段,故直线过线段的中点,又直线过坐标原点,
所以
(Ⅱ)将直线的方程代入椭圆方程得: ,因此
于是,由此得直线的方程为:
所以点到直线即的距离
(Ⅲ)法一:设,则
由题意得:
设直线的斜率分别为,因为在直线上,所以
从而,所以:
法二:
所以直线的方程为: 代入椭圆方程得:
由韦达定理得:
所以
,所以
考点:本题考查椭圆的方程、直线的方程,中点坐标公式,点到直线的距离,两直线垂直的判定;考查韦达定理.
科目:高中数学 来源: 题型:解答题
已知椭圆的左右焦点分别是,离心率,为椭圆上任一点,且的最大面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设斜率为的直线交椭圆于两点,且以为直径的圆恒过原点,若实数满足条件,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N
(1)求的值;
(2)记直线MN的斜率为,直线AB的斜率为 证明:为定值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在轴上,焦距为,且经过点,直线交椭圆于不同的两点A,B.
(1)求的取值范围;,
(2)若直线不经过点,求证:直线的斜率互为相反数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆()右顶点与右焦点的距离为,短轴长为.
(I)求椭圆的方程;
(II)过左焦点的直线与椭圆分别交于、两点,若三角形的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,椭圆C过点,两个焦点为.
(1)求椭圆C的方程;
(2) 是椭圆C上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆经过点离心率,直线的方程为.
(Ⅰ)求椭圆的方程;
(Ⅱ)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得若存在求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的长轴两端点分别为,是椭圆上的动点,以为一边在轴下方作矩形,使,交于点,交于点.
(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;
(Ⅱ)如图(2),若,试证明:成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在直角坐标系中,曲线的参数方程为:(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:.
(Ⅰ)写出曲线和直线在直角坐标系下的方程;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com