精英家教网 > 高中数学 > 题目详情

已知在直角坐标系中,曲线的参数方程为:为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:
(Ⅰ)写出曲线和直线在直角坐标系下的方程;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.

(Ⅰ);(II)

解析试题分析:(Ⅰ)利用转化公式参数方程、极坐标方程为直角坐标方程;(II)利用点到直线距离公式得点它到直线的距离的函数关系式,最后利用函数求最值.
试题解析:(Ⅰ)
所以曲线在直角坐标系下的标准方程是   

故直线在直角坐标系下的标准方程是
(II)设,于是点到直线的距离为
   
  

时取等号,此时
所以点到直线的距离的最小值为
考点:考查选坐标系与参数方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,分别是椭圆的顶点,过坐标原点的直线交椭圆于两点,其中在第一象限.过轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为

(Ⅰ)当直线平分线段时,求的值;
(Ⅱ)当时,求点到直线的距离;
(Ⅲ)对任意,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个交点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数,).
(Ⅰ)化曲线的极坐标方程为直角坐标方程;
(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.
(Ⅰ)若ΔABF2为正三角形,求椭圆的离心率;
(Ⅱ)若椭圆的离心率满足,0为坐标原点,求证为钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为为椭圆的两个焦点,点在椭圆上,且的周长为
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆相交于两点,若为坐标原点),求证:直线与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的离心率为是其左右顶点,是椭圆上位于轴两侧的点(点轴上方),且四边形面积的最大值为4.

(1)求椭圆方程;
(2)设直线的斜率分别为,若,设△与△的面积分别为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线的参数方程为
以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
⑴ 求曲线的普通方程和曲线的直角坐标方程;
⑵ 当时,曲线相交于两点,求以线段为直径的圆的直角坐标方程.

查看答案和解析>>

同步练习册答案