椭圆的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.
(Ⅰ)若ΔABF2为正三角形,求椭圆的离心率;
(Ⅱ)若椭圆的离心率满足,0为坐标原点,求证为钝角.
(Ⅰ);(Ⅱ)见解析.
解析试题分析:(Ⅰ)由椭圆定义易得为边上的中线,在中,可得,即得椭圆的离心率;(Ⅱ)设,,由,,先得,再分两种情况讨论,①是当直线轴垂直时;②是当直线不与轴垂直时,都证明,可得结论.
试题解析:由椭圆的定义知,周长为,
因为为正三角形,所以,,为边上的高线, 2分
,∴椭圆的离心率. 4分
(Ⅱ)设,因为,,所以 6分
①当直线轴垂直时,,,,
=, 因为,所以,为钝角. 8分
②当直线不与轴垂直时,设直线的方程为:,代入,
整理得:,
,
10分
令, 由 ①可知 ,恒为钝角. 12分
考点:1、椭圆的定义及性质;2、直线与椭圆相交的综合应用;3、向量的数量积的坐标运算.
科目:高中数学 来源: 题型:解答题
已知,椭圆C过点,两个焦点为.
(1)求椭圆C的方程;
(2) 是椭圆C上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;
(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线的参数方程为是参数,是曲线与轴正半轴的交点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,求经过点与曲线只有一个公共点的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在直角坐标系中,曲线的参数方程为:(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:.
(Ⅰ)写出曲线和直线在直角坐标系下的方程;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知分别是椭圆的左、右顶点,点在椭圆上,且直线与直线的斜率之积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,已知是椭圆上不同于顶点的两点,直线与交于点,直线与交于点.① 求证:;② 若弦过椭圆的右焦点,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆: ,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程;
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆,是长轴的左、右端点,动点满足,联结,交椭圆于点.
(1)当,时,设,求的值;
(2)若为常数,探究满足的条件?并说明理由;
(3)直接写出为常数的一个不同于(2)结论类型的几何条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com