精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;
(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.

(1) ; (2)定值是4,详见解析;
(3)存在, 的坐标为,的面积为.

解析试题分析:(1)根据椭圆的焦点、离心率和的关系求出椭圆标准方程中的;(2)先设,求出直线的方程,并求出它们与轴的交点的坐标,建立三点坐标的关系,然后利用在椭圆上,从而把中的消去得到定值; (3)先假设存在点,则有直线与圆相交,进而写出的面积函数,发现利用基本不等式可以求出函数的最大值,故假设存在,再求出取得最大值时点的坐标.
试题解析:解:(1)由题意:,解得:             3分
所以椭圆                                4分
(2) 由(1)可知,设,              
直线:,令,得;              5分
直线:,令,得;              6分
,                          7分
,所以,
所以             8分
(3)假设存在点满足题意,则,即
设圆心到直线的距离为,则,且    9分
所以             10分
所以       11分
因为,所以,所以
所以  12分
当且仅当,即时,取得最大值
,解得       13分
所以存在点满足题意,点的坐标为

此时的面积为                   14分
考点:1、椭圆的标准方程,、2解析法,3、直线与圆相交问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,椭圆的左顶点为是椭圆上异于点的任意一点,点与点 关于点对称.

(1)若点的坐标为,求的值;
(2)若椭圆上存在点,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:  (a>b>0)的两个焦点和短轴的两个端点都在圆上.
(I)求椭圆C的方程;
(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个交点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左,右焦点,为椭圆上的动点,且的最大值为1,最小值为-2.
(I)求椭圆的方程;
(II)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点。试判断的大小是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.
(Ⅰ)若ΔABF2为正三角形,求椭圆的离心率;
(Ⅱ)若椭圆的离心率满足,0为坐标原点,求证为钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知焦点在轴上的椭圆和双曲线的离心率互为倒数,它们在第一象限交点的坐标为,设直线(其中为整数).
(1)试求椭圆和双曲线的标准方程;
(2)若直线与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线的参数方程为
以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
⑴ 求曲线的普通方程和曲线的直角坐标方程;
⑵ 当时,曲线相交于两点,求以线段为直径的圆的直角坐标方程.

查看答案和解析>>

同步练习册答案