已知焦点在轴上的椭圆和双曲线的离心率互为倒数,它们在第一象限交点的坐标为,设直线(其中为整数).
(1)试求椭圆和双曲线的标准方程;
(2)若直线与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
(1)椭圆为: ,双曲线为:(2)存在,满足条件的直线共有9条.
解析试题分析:(1)将点代入即可求出椭圆的方程,通过椭圆的离心率求出双曲线的离心率,联立离心率和双曲线的方程,求出;(2)因为直线与椭圆交于不同两点,所以联立直线和椭圆方程,消去,整理方程即可.
试题解析:(1)将点代入解得
∴椭圆为: , (2分)
椭圆的离心率为∴双曲线的离心率为, (3分)
∴,
∴双曲线为: (6分)
(2)由消去化简整理得:
设,,则
① (8分)
由消去化简整理得:
设,,则
② (10分)
因为,所以,
由得:.
所以或.由上式解得或.
当时,由①和②得.因是整数,
所以的值为
当,由①和②得.因是整数,所以.
于是满足条件的直线共有9条. (13分)
考点:1.求椭圆、双曲线的方程.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;
(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆: ,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程;
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知、是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为.
(1) 求椭圆的方程;
(2) 若是椭圆上不重合的四个点,满足向量与共线,与共
线,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆,是长轴的左、右端点,动点满足,联结,交椭圆于点.
(1)当,时,设,求的值;
(2)若为常数,探究满足的条件?并说明理由;
(3)直接写出为常数的一个不同于(2)结论类型的几何条件.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直接坐标系中,直线的方程为,曲线的参数方程为(为参数).
(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com