若双曲线与椭圆
有相同的焦点,与双曲线
有相同渐近线,求双曲线方程.
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的四个顶点恰好是一边长为2,一内角为
的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知焦点在
轴上的椭圆
和双曲线
的离心率互为倒数,它们在第一象限交点的坐标为
,设直线
(其中
为整数).
(1)试求椭圆
和双曲线
的标准方程;
(2)若直线
与椭圆
交于不同两点
,与双曲线
交于不同两点
,问是否存在直线
,使得向量
,若存在,指出这样的直线有多少条?若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点
,
,动点
到定点
距离与到定点
的距离的比值是
.
(Ⅰ)求动点
的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当
时,记动点
的轨迹为曲线
.
①若
是圆
上任意一点,过
作曲线
的切线,切点是
,求
的取值范围;
②已知
,
是曲线
上不同的两点,对于定点
,有
.试问无论
,
两点的位置怎样,直线
能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
的离心率为
,
是其左右顶点,
是椭圆上位于
轴两侧的点(点
在
轴上方),且四边形
面积的最大值为4.![]()
(1)求椭圆方程;
(2)设直线
的斜率分别为
,若
,设△
与△
的面积分别为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过点C(0,1)的椭圆
的离心率为
,椭圆与x轴交于两点
、
,过点C的直线
与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q.![]()
(I)当直线
过椭圆右焦点时,求线段CD的长;
(II)当点P异于点B时,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系
中,曲线
的参数方程为
,
以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
⑴ 求曲线
的普通方程和曲线
的直角坐标方程;
⑵ 当
时,曲线
和
相交于
、
两点,求以线段
为直径的圆的直角坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com