已知双曲线
的左、右焦点分别为
离心率为
直线
与C的两个交点间的距离为![]()
(I)求
;
(II)设过
的直线l与C的左、右两支分别相交有A、B两点,且
证明:![]()
科目:高中数学 来源: 题型:解答题
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,且其短轴上的一个端点到
的距离为
.
(Ⅰ)求椭圆
的方程和其“准圆”方程;
(Ⅱ)点
是椭圆
的“准圆”上的一个动点,过动点
作直线
,使得
与椭圆
都只有一个交点,试判断
是否垂直,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
,
是长轴的左、右端点,动点
满足
,联结
,交椭圆于点
. ![]()
(1)当
,
时,设
,求
的值;
(2)若
为常数,探究
满足的条件?并说明理由;
(3)直接写出
为常数的一个不同于(2)结论类型的几何条件.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上.若椭圆上的点
到焦点
、
的距离之和等于4.
(1)写出椭圆
的方程和焦点坐标.
(2)过点
的直线与椭圆交于两点
、
,当
的面积取得最大值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的焦距为4,且过点
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设
为椭圆
上一点,过点
作
轴的垂线,垂足为
。取点
,连接
,过点
作
的垂线交
轴于点
。点
是点
关于
轴的对称点,作直线
,问这样作出的直线
是否与椭圆C一定有唯一的公共点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的顶点为原点,其焦点
到直线
的距离为
.设
为直线
上的点,过点
作抛物线
的两条切线
,其中
为切点.
(1) 求抛物线
的方程;
(2) 当点
为直线
上的定点时,求直线
的方程;
(3) 当点
在直线
上移动时,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直接坐标系
中,直线
的方程为
,曲线
的参数方程为
(
为参数).
(I)已知在极坐标(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为(4,
),判断点
与直线
的位置关系;
(II)设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的离心率为
,两焦点分别为
,点M是椭圆C上一点,
的周长为16,设线段MO(O为坐标原点)与圆
交于点N,且线段MN长度的最小值为
.
(1)求椭圆C以及圆O的方程;
(2)当点
在椭圆C上运动时,判断直线
与圆O的位置关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com