已知椭圆
的焦距为4,且过点
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设
为椭圆
上一点,过点
作
轴的垂线,垂足为
。取点
,连接
,过点
作
的垂线交
轴于点
。点
是点
关于
轴的对称点,作直线
,问这样作出的直线
是否与椭圆C一定有唯一的公共点?并说明理由.
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,椭圆
的右焦点为
,离心率为
.
分别过
,
的两条弦
,
相交于点
(异于
,
两点),且
.
(1)求椭圆的方程;
(2)求证:直线
,
的斜率之和为定值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过抛物线
的焦点F作斜率分别为
的两条不同的直线
,且
,
相交于点A,B,
相交于点C,D。以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为
。
(I)若
,证明;
;
(II)若点M到直线
的距离的最小值为
,求抛物线E的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
的顶点A在射线
上,
、
两点关于x轴对称,0为坐标原点,且线段AB上有一点M满足
当点A在
上移动时,记点M的轨迹为W.
(Ⅰ)求轨迹W的方程;
(Ⅱ)设
是否存在过
的直线
与W相交于P,Q两点,使得
若存在,
求出直线
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的右焦点
在圆
上,直线
交椭圆于
、
两点.
(1)求椭圆
的方程;
(2)若
(
为坐标原点),求
的值;
(3)设点
关于
轴的对称点为
(
与
不重合),且直线![]()
与
轴交于点
,试问
的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为![]()
(1)求双曲线C的方程;
(2)若直线
与双曲线C恒有两个不同的交点A和B,且
(其中O为原点). 求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com