已知椭圆:的右焦点在圆上,直线交椭圆于、两点.
(1)求椭圆的方程;
(2)若(为坐标原点),求的值;
(3)设点关于轴的对称点为(与不重合),且直线与轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
已知椭圆的焦距为4,且过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设为椭圆上一点,过点作轴的垂线,垂足为。取点,连接,过点作的垂线交轴于点。点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆C一定有唯一的公共点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直接坐标系中,直线的方程为,曲线的参数方程为(为参数).
(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的长轴长为,离心率.
Ⅰ)求椭圆C的标准方程;
Ⅱ)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于不同的两点E,F(E在B,F之间),且OBE与OBF的面积之比为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为(为参数).
(1)求曲线的直角坐标方程以及曲线的普通方程;
(2)设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线的焦点为F,准线与x轴的交点为A.点C在抛物线E上,以C为圆心,为半径作圆,设圆C与准线交于不同的两点M,N.
(I)若点C的纵坐标为2,求;
(II)若,求圆C的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com