精英家教网 > 高中数学 > 题目详情

在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为为参数).
(1)求曲线的直角坐标方程以及曲线的普通方程;
(2)设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.

(1) (2)

解析试题分析:解:(1) 对于曲线的方程为
可化为直角坐标方程,即
对于曲线的参数方程为为参数),
可化为普通方程.                                                                      
(2) 过圆心点作直线的垂线,此时两切线成角最大,即余弦值最小. 则由点到直线的距离公式可知,
,则,因此
因此两条切线所成角的余弦值的取值范围是.                
考点:参数方程;极坐标方程
点评:解决关于参数方程的问题,需将问题转化为直角坐标系中的问题,转化只需消去参数,需要注意的是,要结合参数去得到x和y的取值范围。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点在圆上,直线交椭圆于两点.
(1)求椭圆的方程;
(2)若(为坐标原点),求的值;
(3)设点关于轴的对称点为不重合),且直线轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆的极坐标方程为,以极点为直角坐标系的原点,极轴为轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆上的一点作平行于轴的直线,设轴交于点,向量
(Ⅰ)求动点的轨迹方程;
(Ⅱ)设点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点在抛物线上.

(1)求抛物线的方程及其准线方程;
(2)过抛物线上的动点作抛物线的两条切线, 切点为.若的斜率乘积为,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,且经过点
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,直线l为圆的一条切线,且经过椭圆C的右焦点,直线l的倾斜角为,记椭圆C的离心率为e.
(1)求e的值;
(2)试判定原点关于l的对称点是否在椭圆上,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为,离心率为分别为其左右焦点.一动圆过点,且与直线相切.
(1)求椭圆及动圆圆心轨迹的方程;
(2) 在曲线上有两点,椭圆上有两点,满足共线,共线,且,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在椭圆上找一点,使这一点到直线的距离为最小,并求最小值。

查看答案和解析>>

同步练习册答案