设圆
的极坐标方程为
,以极点为直角坐标系的原点,极轴为
轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆
上的一点
作平行于
轴的直线
,设
与
轴交于点
,向量
.
(Ⅰ)求动点
的轨迹方程;
(Ⅱ)设点
,求
的最小值.
科目:高中数学 来源: 题型:解答题
如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.![]()
(1)求该椭圆的离心率和标准方程;
(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点B(0,1),点C(0,—3),直线PB、PC都是圆
的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线
与(I)中的抛物线相交于M、N两点,问是否存在定点R,使
为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
是离心率为
的椭圆
:
上的一点,斜率为
的直线
交椭圆
于
、
两点,且
、
、
三点不重合.
(1)求椭圆
的方程;
(2)
的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在极坐标系内,已知曲线
的方程为
,以极点为原点,极轴方向为
正半轴方向,利用相同单位长度建立平面直角坐标系,曲线
的参数方程为
(
为参数).
(1)求曲线
的直角坐标方程以及曲线
的普通方程;
(2)设点
为曲线
上的动点,过点
作曲线
的两条切线,求这两条切线所成角余弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为
,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线
,
∥l且
与曲线C的交点A、B满足
;
若存在请求出满足题意的所有直线方程,若不存在请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
的渐近线方程为
,左焦点为F,过
的直线为
,原点到直线
的距离是![]()
(1)求双曲线的方程;
(2)已知直线
交双曲线于不同的两点C,D,问是否存在实数
,使得以CD为直径的圆经过双曲线的左焦点F。若存在,求出m的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线
的焦点为F,准线
与x轴的交点为A.点C在抛物线E上,以C为圆心,
为半径作圆,设圆C与准线
交于不同的两点M,N.![]()
(I)若点C的纵坐标为2,求
;
(II)若
,求圆C的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com