精英家教网 > 高中数学 > 题目详情

设圆的极坐标方程为,以极点为直角坐标系的原点,极轴为轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆上的一点作平行于轴的直线,设轴交于点,向量
(Ⅰ)求动点的轨迹方程;
(Ⅱ)设点 ,求的最小值.

(1)        (2)

解析试题分析:解:(1)由已知得N是坐标(m,0)设Q

点M在圆P=2上   由P=2得

Q是轨迹方程为                   5分
(Ⅱ)Q点的参数方程为 
        的最小值为            12分
考点:直线与椭圆的关系
点评:主要是考查了椭圆方程以及椭圆参数方程的运用,求解最值,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点,动点满足.
(1)求动点P的轨迹方程; 
(2)设(1)中所求轨迹与直线交于点两点 ,求证(为原点)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;
(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是离心率为的椭圆上的一点,斜率为的直线交椭圆两点,且三点不重合.
(1)求椭圆的方程;
(2)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为为参数).
(1)求曲线的直角坐标方程以及曲线的普通方程;
(2)设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线 ,∥l且与曲线C的交点A、B满足
若存在请求出满足题意的所有直线方程,若不存在请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的渐近线方程为,左焦点为F,过的直线为,原点到直线的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的两点CD,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在,求出m的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线的焦点为F,准线与x轴的交点为A.点C在抛物线E上,以C为圆心,为半径作圆,设圆C与准线交于不同的两点M,N.

(I)若点C的纵坐标为2,求
(II)若,求圆C的半径.

查看答案和解析>>

同步练习册答案