如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.![]()
(1)求该椭圆的离心率和标准方程;
(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.
(1)
+
=1,e=
;(2) x+2y+2=0和x-2y+2=0.
解析试题分析:(1)设所求椭圆的标准方程为
+
=1(a>b>0),右焦点为F2(c,0).因为△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2为直角,因此|OA|=|OB2|,得b=
.
结合c2=a2-b2,得4b2=a2-b2,故a2=5b2,c2=4b2,∴离心率e=
=
.
在Rt△AB1B2中,OA⊥B1B2,故S△AB1B2=
|B1B2|·|OA|=|OB2|·|OA|=
b=b2.
由题设条件S△AB1B2=4,得b2=4,从而a2=5b2=20.
因此所求椭圆的标准方程为
+
=1.
(2)由(1),知B1(-2,0),B2(2,0).由题意,知直线l的倾斜角不为0,故可设直线l的方程为x=my-2,代入椭圆方程,得(m2+5)y2-4my-16=0.
设P(x1,y1),Q(x2,y2),则y1,y2是上面方程的两根,因此y1+y2=
,y1·y2=-
.
又
=(x1-2,y1),
=(x2-2,y2),
∴
·
=(x1-2)(x2-2)+y1y2=(my1-4)(my2-4)+y1y2=(m2+1)y1y2-4m(y1+y2)+16=-
-
+16=-
.
由PB2⊥QB1,得
·
=0,即16m2-64=0,解得m=±2.
∴满足条件的直线有两条,其方程分别为x+2y+2=0和x-2y+2=0.
考点:椭圆的标准方程;椭圆的简单性质;直线与椭圆的综合应用。
点评:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
科目:高中数学 来源: 题型:解答题
过抛物线
的焦点F作斜率分别为
的两条不同的直线
,且
,
相交于点A,B,
相交于点C,D。以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为
。
(I)若
,证明;
;
(II)若点M到直线
的距离的最小值为
,求抛物线E的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
:
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线
与椭圆交于S、T两点,与抛物线交于C、D两点,且
.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过点
的直线与椭圆
相交于两点
,设
为椭圆
上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
:
的右焦点为
且
为常数,离心率为
,过焦点
、倾斜角为
的直线
交椭圆
与M,N两点,
(1)求椭圆
的标准方程;
(2)当
=
时,
=
,求实数
的值;
(3)试问
的值是否与直线
的倾斜角
的大小无关,并证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为![]()
(1)求双曲线C的方程;
(2)若直线
与双曲线C恒有两个不同的交点A和B,且
(其中O为原点). 求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,焦点在
轴上,其左、右焦点分别为
、
,短轴长为
,点
在椭圆
上,且满足
的周长为6.
(Ⅰ)求椭圆
的方程;;
(Ⅱ)设过点
的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使
恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设圆
的极坐标方程为
,以极点为直角坐标系的原点,极轴为
轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆
上的一点
作平行于
轴的直线
,设
与
轴交于点
,向量
.
(Ⅰ)求动点
的轨迹方程;
(Ⅱ)设点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率为
,且经过点
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于
,
两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且
.求△ABM的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
分别是椭圆的
左,右焦点。
(Ⅰ)若
是第一象限内该椭圆上的一点,且
,求点
的坐标。
(Ⅱ)设过定点
的直线与椭圆交于不同的两点
,且
为锐角(其中O为坐标原点),求直线
的斜率
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com