精英家教网 > 高中数学 > 题目详情

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;
(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.

(1)=1,e= ;(2) x+2y+2=0和x-2y+2=0.

解析试题分析:(1)设所求椭圆的标准方程为=1(a>b>0),右焦点为F2(c,0).因为△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2为直角,因此|OA|=|OB2|,得b=.
结合c2=a2-b2,得4b2=a2-b2,故a2=5b2,c2=4b2,∴离心率e=.
在Rt△AB1B2中,OA⊥B1B2,故S△AB1B2|B1B2|·|OA|=|OB2|·|OA|=b=b2.
由题设条件S△AB1B2=4,得b2=4,从而a2=5b2=20.
因此所求椭圆的标准方程为=1.
(2)由(1),知B1(-2,0),B2(2,0).由题意,知直线l的倾斜角不为0,故可设直线l的方程为x=my-2,代入椭圆方程,得(m2+5)y2-4my-16=0.
设P(x1,y1),Q(x2,y2),则y1,y2是上面方程的两根,因此y1+y2,y1·y2=-.
=(x1-2,y1),=(x2-2,y2),
·=(x1-2)(x2-2)+y1y2=(my1-4)(my2-4)+y1y2=(m2+1)y1y2-4m(y1+y2)+16=-+16=-.
由PB2⊥QB1,得·=0,即16m2-64=0,解得m=±2.
∴满足条件的直线有两条,其方程分别为x+2y+2=0和x-2y+2=0.
考点:椭圆的标准方程;椭圆的简单性质;直线与椭圆的综合应用。
点评:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

过抛物线的焦点F作斜率分别为的两条不同的直线,且相交于点A,B,相交于点C,D。以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为
(I)若,证明;
(II)若点M到直线的距离的最小值为,求抛物线E的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的右焦点为为常数,离心率为,过焦点、倾斜角为的直线交椭圆与M,N两点,
(1)求椭圆的标准方程;
(2)当=时,=,求实数的值;
(3)试问的值是否与直线的倾斜角的大小无关,并证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,其左、右焦点分别为,短轴长为,点在椭圆上,且满足的周长为6.
(Ⅰ)求椭圆的方程;;
(Ⅱ)设过点的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆的极坐标方程为,以极点为直角坐标系的原点,极轴为轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆上的一点作平行于轴的直线,设轴交于点,向量
(Ⅰ)求动点的轨迹方程;
(Ⅱ)设点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,且经过点
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

同步练习册答案