精英家教网 > 高中数学 > 题目详情

椭圆的右焦点为为常数,离心率为,过焦点、倾斜角为的直线交椭圆与M,N两点,
(1)求椭圆的标准方程;
(2)当=时,=,求实数的值;
(3)试问的值是否与直线的倾斜角的大小无关,并证明你的结论

(1)(2)(3)为定值

解析试题分析:(1)得:,椭圆方程为  3分
(2)当时,,得:
于是当=时,,于是
得到      6分
(3)①当=时,由(2)知  8分
②当时,设直线的斜率为则直线MN:
联立椭圆方程有
,  11分
=+==

综上,为定值,与直线的倾斜角的大小无关  14分
考点:椭圆方程性质及直线与椭圆的位置关系
点评:椭圆中,离心率,第三问在判定是否为定值时需将直线分两种情况:斜率存在与不存在,当斜率存在时常联立方程利用根与系数的关系求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,抛物线

(I)
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的长轴长为,离心率
Ⅰ)求椭圆C的标准方程;
Ⅱ)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于不同的两点E,F(E在B,F之间),且OBE与OBF的面积之比为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过直线y=﹣1上的动点A(a,﹣1)作抛物线y=x2的两切线AP,AQ,P,Q为切点.
(1)若切线AP,AQ的斜率分别为k1,k2,求证:k1•k2为定值.
(2)求证:直线PQ过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,动点满足.
(1)求动点P的轨迹方程; 
(2)设(1)中所求轨迹与直线交于点两点 ,求证(为原点)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,己知直线l与抛物线相切于点P(2,1),且与x轴交于点A,定点B(2,0).

(1)若动点M满足,求点M轨迹C的方程:
(2)若过点B的直线(斜率不为零)与(1)中的轨迹C交于不同的两点E,F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;
(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是离心率为的椭圆上的一点,斜率为的直线交椭圆两点,且三点不重合.
(1)求椭圆的方程;
(2)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的中心在原点,其上、下顶点分别为,点在直线上,点到椭圆的左焦点的距离为.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是椭圆上异于的任意一点,点轴上的射影为的中点,直线交直线于点的中点,试探究:在椭圆上运动时,直线与圆:的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案