精英家教网 > 高中数学 > 题目详情

已知椭圆C:的长轴长为,离心率
Ⅰ)求椭圆C的标准方程;
Ⅱ)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于不同的两点E,F(E在B,F之间),且OBE与OBF的面积之比为,求直线的方程.

(1)        (2)

解析试题分析:解:(I)椭圆C的方程为,由已知得
解得   ∴所求椭圆的方程为.
(II)由题意知的斜率存在且不为零,
方程为 ①,将①代入,整理得
,由 
,则②.
由已知, , 则 
由此可知,,即. 代入②得,,消去  解得,,满足 即.
所以,所求直线的方程为.
考点:直线与椭圆的位置关系
点评:主要是考查了椭圆的方程与性质,以及直线与椭圆的位置关系的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

曲线C上任一点到定点(0,)的距离等于它到定直线的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过抛物线的焦点F作斜率分别为的两条不同的直线,且相交于点A,B,相交于点C,D。以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为
(I)若,证明;
(II)若点M到直线的距离的最小值为,求抛物线E的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点在抛物线上.

(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过抛物线上的动点作抛物线的两条切线, 切点为.若的斜率乘积为,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点在圆上,直线交椭圆于两点.
(1)求椭圆的方程;
(2)若(为坐标原点),求的值;
(3)设点关于轴的对称点为不重合),且直线轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线为常数),为其焦点.

(1)写出焦点的坐标;
(2)过点的直线与抛物线相交于两点,且,求直线的斜率;
(3)若线段是过抛物线焦点的两条动弦,且满足,如图所示.求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的右焦点为为常数,离心率为,过焦点、倾斜角为的直线交椭圆与M,N两点,
(1)求椭圆的标准方程;
(2)当=时,=,求实数的值;
(3)试问的值是否与直线的倾斜角的大小无关,并证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,且经过点
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求△ABM的面积.

查看答案和解析>>

同步练习册答案