如图,已知抛物线的焦点在抛物线上.
(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过抛物线上的动点作抛物线的两条切线、, 切点为、.若、的斜率乘积为,且,求的取值范围.
科目:高中数学 来源: 题型:解答题
设抛物线C:的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若,求线段中点M的轨迹方程;
(2)若直线AB的方向向量为,当焦点为时,求的面积;
(3)若M是抛物线C准线上的点,求证:直线的斜率成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面内动点到点的距离等于它到直线的距离,记点的轨迹为曲.
(Ⅰ)求曲线的方程;
(Ⅱ)若点,,是上的不同三点,且满足.证明: 不可能为直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在矩形中,分别为四边的中点,且都在坐标轴上,设,.
(Ⅰ)求直线与的交点的轨迹的方程;
(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的长轴长为,离心率.
Ⅰ)求椭圆C的标准方程;
Ⅱ)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于不同的两点E,F(E在B,F之间),且OBE与OBF的面积之比为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过直线y=﹣1上的动点A(a,﹣1)作抛物线y=x2的两切线AP,AQ,P,Q为切点.
(1)若切线AP,AQ的斜率分别为k1,k2,求证:k1•k2为定值.
(2)求证:直线PQ过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点不重合.
(1)求椭圆的方程;
(2)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线的焦点为F,准线与x轴的交点为A.点C在抛物线E上,以C为圆心,为半径作圆,设圆C与准线交于不同的两点M,N.
(I)若点C的纵坐标为2,求;
(II)若,求圆C的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com