精英家教网 > 高中数学 > 题目详情

过直线y=﹣1上的动点A(a,﹣1)作抛物线y=x2的两切线AP,AQ,P,Q为切点.
(1)若切线AP,AQ的斜率分别为k1,k2,求证:k1•k2为定值.
(2)求证:直线PQ过定点.

(1)设过A作抛物线y=x2的切线的斜率为k,用选定系数法给出切线的方程,与抛物线方程联立消元得到关于x的一元二次方程,此一元二次方程仅有一根,故其判别式为0,得到关于k的一元二次方程,k1,k2必为其二根,由根系关系可求得两根之积为定值,即k1•k2为定值
(2)设P(x1,y1),Q(x2,y2),用其坐标表示出两个切线的方程,因为A点是两切线的交点将其坐标代入两切线方程,观察发现P(x1,y1),Q(x2,y2)的坐标都适合方程2ax﹣y+1=0上,因为两点确定一条直线,故可得过这两点的直线方程必为2ax﹣y+1=0,该线过定点(0,1)故证得.

解析试题分析:(1)设过A作抛物线y=x2的切线的斜率为k,
则切线的方程为y+1=k(x﹣a),
与方程y=x2联立,消去y,得x2﹣kx+ak+1=0.
因为直线与抛物线相切,所以△=k2﹣4(ak+1)=0,
即k2﹣4ak﹣4=0.由题意知,此方程两根为k1,k2
∴k1k2=﹣4(定值).(5分)
(2)设P(x1,y1),Q(x2,y2),由y=x2,得y′=2x.
所以在P点处的切线斜率为:
因此,切线方程为:y﹣y1=2x1(x﹣x1).
由y1=x12,化简可得,2x1x﹣y﹣y1=0.
同理,得在点Q处的切线方程为2x2x﹣y﹣y2=0.
因为两切线的交点为A(a,﹣1),故2x1a﹣y1+1=0,2x2a﹣y2+1=0.
∴P,Q两点在直线2ax﹣y+1=0上,即直线PQ的方程为:2ax﹣y+1=0.
当x=0时,y=1,所以直线PQ经过定点(0,1).(10分)
考点:直线的斜率;恒过定点的直线
点评:本题考查转化的技巧,(I)将两斜率之积为定值的问题转化 成了两根之积来求,(II)中将求两动点的连线过定点的问题 转化成了求直线系过定点的问题,转化巧妙,有艺术性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为F, 离心率为, 过点F且与x轴垂直的直线被椭圆截得的线段长为.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若, 求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点在抛物线上.

(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过抛物线上的动点作抛物线的两条切线, 切点为.若的斜率乘积为,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线为常数),为其焦点.

(1)写出焦点的坐标;
(2)过点的直线与抛物线相交于两点,且,求直线的斜率;
(3)若线段是过抛物线焦点的两条动弦,且满足,如图所示.求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,上、下焦点分别为
向量.直线与椭圆交于两点,线段中点为
(1)求椭圆的方程;
(2)求直线的方程;
(3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线
与区域有公共点,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的右焦点为为常数,离心率为,过焦点、倾斜角为的直线交椭圆与M,N两点,
(1)求椭圆的标准方程;
(2)当=时,=,求实数的值;
(3)试问的值是否与直线的倾斜角的大小无关,并证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,其左、右焦点分别为,短轴长为,点在椭圆上,且满足的周长为6.
(Ⅰ)求椭圆的方程;;
(Ⅱ)设过点的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.直线轴正半轴和轴分别交于点,与椭圆分别交于点,各点均不重合且满足
(1)求椭圆的标准方程;
(2)若,试证明:直线过定点并求此定点.

查看答案和解析>>

同步练习册答案