精英家教网 > 高中数学 > 题目详情

设抛物线C:的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若,求线段中点M的轨迹方程;
(2)若直线AB的方向向量为,当焦点为时,求的面积;
(3)若M是抛物线C准线上的点,求证:直线的斜率成等差数列.

(1)  ;(2)
(3)显然直线的斜率都存在,分别设为
的坐标为
联立方程组得到 ,
,得到

解析试题分析:
思路分析:(1) 利用“代入法”。
(2) 联立方程组得,,应用弦长公式求 
,得到面积。
(3)直线的斜率都存在,分别设为
的坐标为
设直线AB:,代入抛物线得, 确定 ,
,得到
解:(1) 设,焦点,则由题意,即 
所求的轨迹方程为,即 
(2) ,直线
得, 

(3)显然直线的斜率都存在,分别设为
的坐标为
设直线AB:,代入抛物线得, 所以

因而
因而 
,故
考点:等差数列,求轨迹方程,直线与抛物线的位置关系。
点评:中档题,涉及“弦中点”问题,往往利用“代入法”求轨迹方程。涉及直线与圆锥曲线的位置关系问题,往往通过联立方程组,应用韦达定理,简化解题过程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的对称中心为坐标原点,上焦点为,离心率.

(Ⅰ)求椭圆的方程;
(Ⅱ)设轴上的动点,过点作直线与直线垂直,试探究直线与椭圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的焦点在轴上,离心率,且经过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线的倾斜角互补.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的左焦点为,左、右顶点分别为,上顶点为,过三点作圆  
(Ⅰ)若线段是圆的直径,求椭圆的离心率;
(Ⅱ)若圆的圆心在直线上,求椭圆的方程;
(Ⅲ)若直线交(Ⅱ)中椭圆于,交轴于,求的最大值  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线C上任一点到定点(0,)的距离等于它到定直线的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为F, 离心率为, 过点F且与x轴垂直的直线被椭圆截得的线段长为.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若, 求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点在抛物线上.

(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过抛物线上的动点作抛物线的两条切线, 切点为.若的斜率乘积为,且,求的取值范围.

查看答案和解析>>

同步练习册答案