在平面直角坐标系中,已知椭圆的左焦点为,左、右顶点分别为,上顶点为,过三点作圆
(Ⅰ)若线段是圆的直径,求椭圆的离心率;
(Ⅱ)若圆的圆心在直线上,求椭圆的方程;
(Ⅲ)若直线交(Ⅱ)中椭圆于,交轴于,求的最大值
(Ⅰ);(Ⅱ);(Ⅲ)1
解析试题分析:(Ⅰ)利用直径所对的圆周角是直角建立参数的关系,然后求之;(Ⅱ)利用圆心在直线上寻找参数的关系,然后求之;(Ⅲ)直线与椭圆的相交问题采用设而不求的思路,利用坐标表示出的表达式,然后使用基本不等式求解
试题解析:(Ⅰ)由椭圆的方程知,点,,设F的坐标为,
是的直径,, 2分
解得,椭圆离心率 4分
(Ⅱ)过点三点,
圆心P既在FC的垂直平分线上,也在BC的垂直平分线上,
FC的垂直平分线方程为 ①
的中点为,的垂直平分线方程为 ②
由①②得,即 7分
在直线上,,。
由得,椭圆的方程为 9分
(Ⅲ)由得 (*)
设,则
11分
13分
当且仅当,时取等号。此时方程(*)中的Δ>0,
的最大值为1 13分
考点:直线与椭圆的位置关系
科目:高中数学 来源: 题型:解答题
已知一条曲线在轴右边,上每一点到点的距离减去它到轴距离的差都等于1.
(1)求曲线C的方程;
(2)若过点M的直线与曲线C有两个交点,且,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知分别是椭圆的左、右顶点,点在椭圆上,且直线与直线的斜率之积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,已知是椭圆上不同于顶点的两点,直线与交于点,直线与交于点.① 求证:;② 若弦过椭圆的右焦点,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,A,B是椭圆的两个顶点, ,直线AB的斜率为.求椭圆的方程;(2)设直线平行于AB,与x,y轴分别交于点M、N,与椭圆相交于C、D,
证明:的面积等于的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线C:的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若,求线段中点M的轨迹方程;
(2)若直线AB的方向向量为,当焦点为时,求的面积;
(3)若M是抛物线C准线上的点,求证:直线的斜率成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl的极坐标方程为,曲线C2的参数方程为为参数)。
(1)当时,求曲线Cl与C2公共点的直角坐标;
(2)若,当变化时,设曲线C1与C2的公共点为A,B,试求AB中点M轨迹的极坐标方程,并指出它表示什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线的焦点为F,准线与x轴的交点为A.点C在抛物线E上,以C为圆心,为半径作圆,设圆C与准线交于不同的两点M,N.
(I)若点C的纵坐标为2,求;
(II)若,求圆C的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com