精英家教网 > 高中数学 > 题目详情

已知椭圆的对称中心为坐标原点,上焦点为,离心率.

(Ⅰ)求椭圆的方程;
(Ⅱ)设轴上的动点,过点作直线与直线垂直,试探究直线与椭圆的位置关系.

(Ⅰ);(Ⅱ)详见解析.

解析试题分析:(Ⅰ)先根据题中的已知条件以及三者之间的关系求出的值,从而确定椭圆的方程;(Ⅱ)先根据直线与直线垂直这一条件确定直线的方程(用点的横坐标表示),然后将直线的方程联立转化成关于的一元二次方程,对三种情况进行分类讨论,并确定相应的的取值范围.
试题解析:(Ⅰ)由条件可知,  3分
所以椭圆的标准方程为.     4分
(Ⅱ),   6分
则直线.   7分
联立
,   9分

,  10分

则当时,,此时直线与椭圆相交;    11分
时,,此时直线与椭圆相切;   12分
时,,此时直线与椭圆相离.   13分
考点:椭圆的方程、直线与椭圆的位置关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设点A(,0),B(,0),直线AM、BM相交于点M,且它们的斜率之积为.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若直线过点F(1,0)且绕F旋转,与圆相交于P、Q两点,与轨迹C相交于R、S两点,若|PQ|求△的面积的最大值和最小值(F′为轨迹C的左焦点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知定点A(-2,0)、B(2,0),异于A、B两点的动点P满足,其中k1、k2分别表示直线AP、BP的斜率.

(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若N是直线x=2上异于点B的任意一点,直线AN与(I)中轨迹E交予点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),点C(1,0),求证:|CM|·|CN| 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的左、右焦点分别为,且椭圆过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一条曲线轴右边,上每一点到点的距离减去它到轴距离的差都等于1.
(1)求曲线C的方程;
(2)若过点M的直线与曲线C有两个交点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,曲线与曲线相交于四个点.
⑴ 求的取值范围;
⑵ 求四边形的面积的最大值及此时对角线的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的左顶点为是椭圆上异于点的任意一点,点与点关于点对称.

(Ⅰ)若点的坐标为,求的值;
(Ⅱ)若椭圆上存在点,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线C:的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若,求线段中点M的轨迹方程;
(2)若直线AB的方向向量为,当焦点为时,求的面积;
(3)若M是抛物线C准线上的点,求证:直线的斜率成等差数列.

查看答案和解析>>

同步练习册答案