已知椭圆的对称中心为坐标原点,上焦点为,离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为轴上的动点,过点作直线与直线垂直,试探究直线与椭圆的位置关系.
科目:高中数学 来源: 题型:解答题
设点A(,0),B(,0),直线AM、BM相交于点M,且它们的斜率之积为.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若直线过点F(1,0)且绕F旋转,与圆相交于P、Q两点,与轨迹C相交于R、S两点,若|PQ|求△的面积的最大值和最小值(F′为轨迹C的左焦点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知定点A(-2,0)、B(2,0),异于A、B两点的动点P满足,其中k1、k2分别表示直线AP、BP的斜率.
(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若N是直线x=2上异于点B的任意一点,直线AN与(I)中轨迹E交予点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),点C(1,0),求证:|CM|·|CN| 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆的左、右焦点分别为和,且椭圆过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一条曲线在轴右边,上每一点到点的距离减去它到轴距离的差都等于1.
(1)求曲线C的方程;
(2)若过点M的直线与曲线C有两个交点,且,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线C:的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若,求线段中点M的轨迹方程;
(2)若直线AB的方向向量为,当焦点为时,求的面积;
(3)若M是抛物线C准线上的点,求证:直线的斜率成等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com