设点A(
,0),B(
,0),直线AM、BM相交于点M,且它们的斜率之积为
.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若直线
过点F(1,0)且绕F旋转,
与圆
相交于P、Q两点,
与轨迹C相交于R、S两点,若|PQ|
求△
的面积的最大值和最小值(F′为轨迹C的左焦点).
科目:高中数学 来源: 题型:解答题
如图,斜率为
的直线过抛物线
的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.![]()
(Ⅰ).若
,求抛物线的方程;
(Ⅱ).求△ABM面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)把
的参数方程化为极坐标方程;
(Ⅱ)求
与
交点的极坐标(
).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板
长为2m,跳水板距水面
的高
为3m,
=5m,
=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点
m(
)时达到距水面最大高度4m,规定:以
为横轴,
为纵轴建立直角坐标系.![]()
(1)当
=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域
内入水时才能达到压水花的训练要求,求达到压水花的训练要求时
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,直线
与以原点为圆心、以椭圆
的短半轴长为半径的圆
相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
,且垂直于椭圆的长轴,动直线
垂直于
,垂足为点
,线段
的垂直平分线交
于点
,求点
的轨迹
的方程;
(3)设
与
轴交于点
,不同的两点
在
上(
与
也不重合),且满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知点
,
,
为动点,且直线
与直线
的斜率之积为
.
(1)求动点
的轨迹
的方程;
(2)设过点
的直线
与曲线
相交于不同的两点
,
.若点
在
轴上,且
,求点
的纵坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com