精英家教网 > 高中数学 > 题目详情

已知椭圆的焦点在轴上,离心率,且经过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线的倾斜角互补.

(1) 见证明.

解析试题分析:(Ⅰ)椭圆有两个独立量,所以需要建立两个方程①利用离心率 ②利用点 在圆上,然后解方程即可,(Ⅱ)建立直线方程后与椭圆方程联立利用韦达定理求出两根之和 两根之积, ,再把两条直线的斜率之和, 来表示,整理即可.
试题解析:(Ⅰ)设椭圆的方程为:,(
,得                          2分
∵椭圆经过点,则,解得                      3分
∴椭圆的方程为                                     4分
(Ⅱ)设直线方程为.
联立得:
,得
                                      6分


10分
                              11分
,所以,直线的倾斜角互补.                    12分
考点:椭圆及其性质,直线与圆锥曲线的关系运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

椭圆的左、右焦点分别为,且椭圆过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的左顶点为是椭圆上异于点的任意一点,点与点关于点对称.

(Ⅰ)若点的坐标为,求的值;
(Ⅱ)若椭圆上存在点,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的离心率是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求为坐标原点)面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,A,B是椭圆的两个顶点, ,直线AB的斜率为.求椭圆的方程;(2)设直线平行于AB,与x,y轴分别交于点M、N,与椭圆相交于C、D,
证明:的面积等于的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,则
是否为定值?若是,求出其值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线C:的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若,求线段中点M的轨迹方程;
(2)若直线AB的方向向量为,当焦点为时,求的面积;
(3)若M是抛物线C准线上的点,求证:直线的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知过点的直线与抛物线交于两点,为坐标原点.
(1)若以为直径的圆经过原点,求直线的方程;
(2)若线段的中垂线交轴于点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面内动点到点的距离等于它到直线的距离,记点的轨迹为曲
(Ⅰ)求曲线的方程;
(Ⅱ)若点上的不同三点,且满足.证明: 不可能为直角三角形.

查看答案和解析>>

同步练习册答案