设椭圆的离心率,是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求(为坐标原点)面积的最小值.
科目:高中数学 来源: 题型:解答题
知椭圆的左右焦点为F1,F2,离心率为,以线段F1 F2为直径的圆的面积为, (1)求椭圆的方程;(2) 设直线l过椭圆的右焦点F2(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
极坐标系中椭圆C的方程为
以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,
求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,.
(Ⅰ)求抛物线的方程;
(Ⅱ) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆:的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.
(1)求双曲线的方程;
(2)以双曲线的另一焦点为圆心的圆与直线相切,圆:.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆的中心在原点,焦点在轴上,短轴长为,离心率为.
(I)求椭圆的方程;
(II) 为椭圆上满足的面积为的任意两点,为线段的中点,射线交椭圆与点,设,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com