已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,.
(Ⅰ)求抛物线的方程;
(Ⅱ) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.
(Ⅰ)抛物线的方程为;(Ⅱ)所求直线的方程为.
解析试题分析:(Ⅰ)由抛物线定义可求出;(Ⅱ)由的角平分线与轴垂直,可知的倾斜角互补,即的斜率互为相反数,可设的方程,利用设而不求的方法来求的斜率为,设直线的方程,利用玄长公式与点到直线距离公式得的面积,由面积最大时来确定,从而得直线的方程.
试题解析:(Ⅰ)解:设,因为,由抛物线的定义得,又,所以,
因此,解得,从而抛物线的方程为 ;
(Ⅱ)由(1)知点的坐标为,设,因为的角平分线与轴垂直,所以可知的倾斜角互补,即的斜率互为相反数,设直线的斜率为,则,由题意,把代入抛物线方程得,该方程的解为4、,由韦达定理得,即,同理,所以,
设,把代入抛物线方程得,由题意,且,从而,又,所以,点到的距离,因此,设,
则,,由知,所以在上为增函数,因此,即面积的最大值为.的面积取最大值时,所求直线的方程为.
考点:1、求抛物线方程,2、直线与二次曲线的位置关系,3、利用导数求最值.
科目:高中数学 来源: 题型:解答题
如图,过抛物线的对称轴上任一点作直线与抛物线交于、两点,点Q是点P关于原点的对称点.
(1)设,证明:;
(2)设直线AB的方程是,过、两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经过点且与直线相切的动圆的圆心轨迹为.点、在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点、.
(1)求轨迹的方程;
(2)证明:;
(3)若点到直线的距离等于,且△的面积为20,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的离心率,是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求(为坐标原点)面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线于两不同点,交轴于点,已知,则
是否为定值?若是,求出其值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆与直线相交于两点.
(1)若椭圆的半焦距,直线与围成的矩形的面积为8,
求椭圆的方程;
(2)若(为坐标原点),求证:;
(3)在(2)的条件下,若椭圆的离心率满足,求椭圆长轴长的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com