精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,经过点的动直线,与椭圆)相交于两点. 当轴时,,当轴时,
(Ⅰ)求椭圆的方程;
(Ⅱ)若的中点为,且,求直线的方程.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)利用已知条件确定的值,进而求出椭圆的方程;(Ⅱ)解法一是逆用“直角三角形斜边上的中线等于斜边的一半”这个性质,由得到为直角三角形,且为斜边,于是得到,借助韦达定理与向量的有关知识确定直线的方程;解法二是直接设直线的方程,直接从问题中的等式出发,借助韦达定理与弦长公式确定直线的方程.
试题解析:解法一:(Ⅰ)当轴时,
轴时,,得
解得
所以椭圆的方程为:.    5分
(Ⅱ)设直线,与方程联立,得
,则 .①
因为,即
所以,即,              8分
所以,则
将①式代入并整理得:,解出
此时直线的方程为:,即.  12分
解法二:(Ⅰ)同解法一                                   5分
(Ⅱ)设直线,与联立,得.(﹡)
,则
从而
.       8分
,则
得:
整理得,即
,解得,从而
故所求直线的方程为:
.                    12分
考点:椭圆的方程、韦达定理、弦长公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆)右顶点到右焦点的距离为,短轴长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点的直线与椭圆分别交于两点,若线段的长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,曲线上任意一点分别与点连线的斜率的乘积为
(Ⅰ)求曲线的方程;
(Ⅱ)设直线轴、轴分别交于两点,若曲线与直线没有公共点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

极坐标系中椭圆C的方程为
以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线的倾斜角互补,
求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C:的半径等于椭圆E:(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x-的距离为,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).

(Ⅰ)求椭圆E的方程;
(Ⅱ)求证:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,
(Ⅰ)求抛物线的方程;
(Ⅱ) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且
(1)求双曲线的方程;
(2)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线,设被圆截得的弦长为被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点是椭圆)的左焦点,点分别是椭圆的左顶点和上顶点,椭圆的离心率为,点轴上,且,过点作斜率为的直线与由三点,确定的圆相交于两点,满足

(1)若的面积为,求椭圆的方程;
(2)直线的斜率是否为定值?证明你的结论.

查看答案和解析>>

同步练习册答案