已知圆C:的半径等于椭圆E:(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x-的距离为-,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).
(Ⅰ)求椭圆E的方程;
(Ⅱ)求证:|AF|-|BF|=|BM|-|AM|.
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,、分别是椭圆的顶点,过坐标原点的直线交椭圆于、两点,其中在第一象限.过作轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为.
(Ⅰ)当直线平分线段时,求的值;
(Ⅱ)当时,求点到直线的距离;
(Ⅲ)对任意,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知为抛物线的焦点,抛物线上点满足
(Ⅰ)求抛物线的方程;
(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H
(Ⅰ)设EF中点为,求证:O、、B、P四点共圆
(Ⅱ)求证:OG =OH.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
四边形ABCD的四个顶点都在抛物线上,A,C关于轴对称,BD平行于抛物线在点C处的切线。
(Ⅰ)证明:AC平分;
(Ⅱ)若点A坐标为,四边形ABCD的面积为4,求直线BD的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经过点且与直线相切的动圆的圆心轨迹为.点、在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点、.
(1)求轨迹的方程;
(2)证明:;
(3)若点到直线的距离等于,且△的面积为20,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,曲线y=x-6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com