精英家教网 > 高中数学 > 题目详情

如图,点是椭圆)的左焦点,点分别是椭圆的左顶点和上顶点,椭圆的离心率为,点轴上,且,过点作斜率为的直线与由三点,确定的圆相交于两点,满足

(1)若的面积为,求椭圆的方程;
(2)直线的斜率是否为定值?证明你的结论.

(1)
(2)

解析试题分析:解:(1)由已知可得, 2分

解得.     3分
所求椭圆方程为.    4分
(2)由 得,则   5分
  则(斜率显然存在且不为零)     6分

,则
得  ,所以                     7分
则圆心的坐标为,半径为               8分
据题意 直线的方程可设为 ,即      9分
 得          10分
,得,而
所以                           11分
在等腰三角形中 由垂径定理可得点到直线的距离为.      12分
则                          13分
解得  而 故 (定值)           14分
考点:直线与椭圆的位置关系
点评:主要是考查了直线与椭圆的位置关系的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,经过点的动直线,与椭圆)相交于两点. 当轴时,,当轴时,
(Ⅰ)求椭圆的方程;
(Ⅱ)若的中点为,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,则
是否为定值?若是,求出其值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的方程为,其离心率为,经过椭圆焦点且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:与椭圆C交于A、B两点,P为椭圆上的点,O为坐标原点,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知过点的直线与抛物线交于两点,为坐标原点.
(1)若以为直径的圆经过原点,求直线的方程;
(2)若线段的中垂线交轴于点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,曲线y=x-6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆与直线相交于两点.
(1)若椭圆的半焦距,直线围成的矩形的面积为8,
求椭圆的方程;
(2)若为坐标原点),求证:
(3)在(2)的条件下,若椭圆的离心率满足,求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设F为抛物线E: 的焦点,A、B、C为该抛物线上三点,已知 .
(1)求抛物线方程;
(2)设动直线l与抛物线E相切于点P,与直线相交于点Q。证明以PQ为直径的圆恒过y轴上某定点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为,直线轴交于点,过点且倾斜角为30°的直线交椭圆于两点.
(Ⅰ)求直线和椭圆的方程;
(Ⅱ)求证:点在以线段为直径的圆上;
(Ⅲ)在直线上有两个不重合的动点,以为直径且过点的所有圆中,求面积最小的圆的半径长.

查看答案和解析>>

同步练习册答案